cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122102 a(n) = Sum_{k=1..n} prime(k)^4.

Original entry on oeis.org

16, 97, 722, 3123, 17764, 46325, 129846, 260167, 540008, 1247289, 2170810, 4044971, 6870732, 10289533, 15169214, 23059695, 35177056, 49022897, 69174018, 94585699, 122983940, 161934021, 209392342, 272134583, 360663864, 464724265, 577275146, 708354747, 849512908
Offset: 1

Views

Author

Alexander Adamchuk, Aug 20 2006

Keywords

Comments

a(n) is prime for n = {2,32,90,110,134,152,168,180,194,...} = A122127.

Crossrefs

Partial sums of A030514.

Programs

  • Magma
    [&+[NthPrime(k)^4: k in [1..n]]: n in [1..30]]; // G. C. Greubel, Oct 02 2019
    
  • Maple
    seq(add(ithprime(k)^4, k=1..n), n=1..30); # G. C. Greubel, Oct 02 2019
  • Mathematica
    Table[Sum[Prime[k]^4,{k,1,n}],{n,1,100}]
    Accumulate[Prime[Range[30]]^4] (* Harvey P. Dale, Aug 07 2021 *)
  • PARI
    a(n)=my(s);forprime(p=2,prime(n),s+=p^4); s \\ Charles R Greathouse IV, Aug 02 2013
    
  • Sage
    [sum(nth_prime(k)^4 for k in (1..n)) for n in (1..30)] # G. C. Greubel, Oct 02 2019

Formula

From Vladimir Shevelev, Aug 02 2013: (Start)
a(n) = 0.2*n^5*log(n)^4 + O(n^5*log(n)^3*log(log(n))). The proof is similar to proof for A007504(n) (see link of Shevelev).
A generalization: Sum_{i=1..n} prime(i)^k = 1/(k+1)*n^(k+1)*log(n)^k + O(n^(k+1)*log(n)^(k-1)*log(log(n))).
(End)