cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122105 Sum of the bottom levels of all columns in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Original entry on oeis.org

0, 0, 0, 1, 11, 101, 932, 9080, 94852, 1066644, 12905784, 167622984, 2330016768, 34551794304, 544873631616, 9110134903680, 161038110977280, 3001678242428160, 58853489050759680, 1211082030609016320, 26101332373130496000, 588033071962511616000
Offset: 0

Views

Author

Emeric Deutsch, Aug 24 2006

Keywords

Examples

			a(2)=0 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having all their columns starting at level zero.
		

Crossrefs

Cf. A122104.

Programs

  • Maple
    a[0]:=0: a[1]:=0: a[2]:=0: for n from 3 to 23 do a[n]:=(2*n-1)*a[n-1]-(n-1)^2*a[n-2]+(n-2)*(n-2)! od: seq(a[n],n=0..23);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==0,a[n]==(2n-1)*a[n-1]-(n-1)^2*a[n-2]+(n-2)!*(n-2)}, a, {n,0,20}] (* Harvey P. Dale, Dec 04 2014; adapted to offset 0 by Georg Fischer, Jul 30 2022 *)

Formula

a(n) = Sum_{k>=0} k*A122104(n,k).
Recurrence relation: a(n) = (2n-1)*a(n-1)-(n-1)^2*a(n-2)+(n-2)!*(n-2) for n>=3, a(0)=a(1)=a(2)=0.
a(n) = n![n - H(n) - (H(n))^2/2 + (1/2)Sum(1/j^2, j=1..n)], where H(n)=Sum(1/j, j=1..n). - Emeric Deutsch, Apr 06 2008
E.g.f.: (2 * x + (1 - x) * log(1 - x) * (2 - log(1 - x))) / (2 * (1 - x)^2). - Ilya Gutkovskiy, Sep 02 2021
D-finite with recurrence a(n) +(-3*n+1)*a(n-1) +(3*n^2-4*n-2)*a(n-2) +(-n^3+2*n^2+7*n-15)*a(n-3) +(n-3)^3*a(n-4)=0. - R. J. Mathar, Jul 26 2022