A350274 Triangle read by rows: T(n,k) is the number of n-permutations whose fourth-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-3).
1, 1, 2, 6, 23, 1, 109, 1, 10, 619, 16, 45, 40, 4108, 92, 210, 420, 210, 31240, 771, 1645, 2800, 2520, 1344, 268028, 6883, 17325, 15960, 26460, 18144, 10080, 2562156, 68914, 173250, 148400, 226800, 211680, 151200, 86400, 27011016, 757934, 1854930, 1798720, 1801800, 2494800, 1940400, 1425600, 831600
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1; [2] 2; [3] 6; [4] 23, 1; [5] 109, 1, 10; [6] 619, 16, 45, 40; [7] 4108, 92, 210, 420, 210; [8] 31240, 771, 1645, 2800, 2520, 1344; [9] 268028, 6883, 17325, 15960, 26460, 18144, 10080; ...
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- Steven Finch, Second best, Third worst, Fourth in line, arxiv:2202.07621 [math.CO], 2022.
Crossrefs
Programs
-
Maple
m:= infinity: b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[4]=m, 0, l[4]), add(b(n-j, sort([l[], j])[1..4]) *binomial(n-1, j-1)*(j-1)!, j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [m$4])): seq(T(n), n=0..11); # Alois P. Heinz, Dec 22 2021
-
Mathematica
m = Infinity; b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[4]] == m, 0, l[[4]]], Sum[b[n-j, Sort[Append[l, j]][[1 ;; 4]]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]; T[n_] := With[{p = b[n, {m, m, m, m}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]]; Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)
Formula
Sum_{k=0..n-3} k * T(n,k) = A332908(n) for n >= 4.
Extensions
More terms from Alois P. Heinz, Dec 22 2021
Comments