cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350274 Triangle read by rows: T(n,k) is the number of n-permutations whose fourth-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-3).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 109, 1, 10, 619, 16, 45, 40, 4108, 92, 210, 420, 210, 31240, 771, 1645, 2800, 2520, 1344, 268028, 6883, 17325, 15960, 26460, 18144, 10080, 2562156, 68914, 173250, 148400, 226800, 211680, 151200, 86400, 27011016, 757934, 1854930, 1798720, 1801800, 2494800, 1940400, 1425600, 831600
Offset: 0

Views

Author

Steven Finch, Dec 22 2021

Keywords

Comments

If the permutation has no fourth cycle, then its fourth-longest cycle is defined to have length 0.

Examples

			Triangle begins:
[0]      1;
[1]      1;
[2]      2;
[3]      6;
[4]     23,    1;
[5]    109,    1,    10;
[6]    619,   16,    45,    40;
[7]   4108,   92,   210,   420,   210;
[8]  31240,  771,  1645,  2800,  2520,  1344;
[9] 268028, 6883, 17325, 15960, 26460, 18144, 10080;
    ...
		

Crossrefs

Column 0 is 1 for n=0, together with A000142(n) - A122105(n-1) for n>=1.
Row sums give A000142.

Programs

  • Maple
    m:= infinity:
    b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[4]=m,
          0, l[4]), add(b(n-j, sort([l[], j])[1..4])
                   *binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [m$4])):
    seq(T(n), n=0..11);  # Alois P. Heinz, Dec 22 2021
  • Mathematica
    m = Infinity;
    b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[4]] == m, 0, l[[4]]], Sum[b[n-j, Sort[Append[l, j]][[1 ;; 4]]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]];
    T[n_] := With[{p = b[n, {m, m, m, m}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..n-3} k * T(n,k) = A332908(n) for n >= 4.

Extensions

More terms from Alois P. Heinz, Dec 22 2021

A122104 Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and such that the sum of the bottom levels of all columns is k (n>=1, k>=0; informally, the number of the "missing" cells in the right bottom corner of the polyomino). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Original entry on oeis.org

1, 2, 5, 1, 16, 5, 3, 65, 23, 20, 10, 2, 326, 119, 115, 84, 57, 11, 8, 1957, 719, 714, 582, 526, 310, 137, 55, 34, 6, 13700, 5039, 5033, 4222, 4173, 3291, 2506, 972, 748, 348, 220, 38, 30, 109601, 40319, 40312, 34026, 34454, 29792, 28055, 18723, 10613, 6745
Offset: 1

Views

Author

Emeric Deutsch, Aug 24 2006

Keywords

Comments

Row n has 1+floor((n-1)^2/4) terms. Row sums are the factorials (A000142). T(n,0)=A000522(n-1). T(n,1)=(n-1)!-1=A033312(n-1). T(n,2)=(n-1)!-n+1=A005096(n-1) for n>=2. Sum(k*T(n,k), k>=0)=A122105(n).

Examples

			Triangle starts:
1;
2;
5,1;
16,5,3;
65,23,20,10,2;
326,119,115,84,57,11,8;
		

References

  • E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
  • E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

Crossrefs

Programs

  • Maple
    Q[1]:=x: for n from 2 to 10 do Q[n]:=simplify(subs(x=t*x,Q[n-1])/t+(n-1)*x*Q[n-1]) od: for n from 1 to 10 do P[n]:=sort(subs(x=1,Q[n])) od: for n from 1 to 10 do seq(coeff(P[n],t,j),j=0..floor((n-1)^2/4)) od; # yields sequence in triangular form

Formula

The row generating polynomials P[n](t) are given by P[n](t)=Q[n](t,1), where Q[1](t,x)=x and Q[n](t,x) = (1/t)Q[n-1](t,tx)+(n-1)xQ[n-1](t,x) for n>=2.

Extensions

Keyword tabf added by Michel Marcus, Apr 09 2013
Showing 1-2 of 2 results.