A122377 a(n) is the n-th term in periodic sequence repeating the divisors of n in increasing order.
1, 2, 1, 1, 1, 2, 1, 8, 9, 2, 1, 12, 1, 2, 5, 1, 1, 18, 1, 2, 1, 2, 1, 24, 1, 2, 9, 7, 1, 10, 1, 2, 1, 2, 7, 36, 1, 2, 13, 40, 1, 2, 1, 2, 5, 2, 1, 16, 1, 2, 17, 13, 1, 18, 11, 56, 1, 2, 1, 60, 1, 2, 7, 1, 1, 2, 1, 2, 1, 14, 1, 72, 1, 2, 5, 19, 1, 26, 1, 80, 1, 2, 1, 84, 1, 2, 29, 88, 1, 9, 13, 2, 1, 2
Offset: 1
Keywords
Examples
The divisors of 6 are 1, 2, 3, 6; repeating that produces the sequence 1, 2, 3, 6, 1, 2, 3, 6, 1, 2, 3, 6, ...; the 6th term in that sequence is 2, so a(6) = 2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> (l-> l[1+irem(n-1, nops(l))])(sort([divisors(n)[]])): seq(a(n), n=1..100); # Alois P. Heinz, Jan 29 2018
-
Mathematica
f[n_] := Block[{d = Divisors[n]}, d[[Mod[n, Length[d], 1]]]];Table[f[n], {n, 100}] (* Ray Chandler, Oct 26 2006 *) Table[PadRight[{},n,Divisors[n]][[-1]],{n,100}] (* Harvey P. Dale, Jun 05 2022 *)
-
PARI
a(n) = my(d=divisors(n)); if (n % #d, d[n % #d], n); \\ Michel Marcus, Jan 26 2018
Extensions
Edited and extended by Ray Chandler, Oct 26 2006
New name from Franklin T. Adams-Watters, Jan 25 2018
Comments