A122432 Riordan array (1/(1+x)^3,x).
1, -3, 1, 6, -3, 1, -10, 6, -3, 1, 15, -10, 6, -3, 1, -21, 15, -10, 6, -3, 1, 28, -21, 15, -10, 6, -3, 1, -36, 28, -21, 15, -10, 6, -3, 1, 45, -36, 28, -21, 15, -10, 6, -3, 1, -55, 45, -36, 28, -21, 15, -10
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 ... ------------------------------------------- 0: 1 1 :-3 1 2: 6 -3 1 3: -10 6 -3 1 4: 15 -10 6 -3 1 5; -21 15 -10 6 -3 1 6: 28 -21 15 -10 6 -3 1 7: -36 28 -21 15 -10 6 -3 1 8: 45 -36 28 -21 15 -10 6 -3 1 9: -55 45 -36 28 -21 15 -10 6 -3 1 ... reformattet by - _Wolfdieter Lang_, Apr 05 2020
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Magma
/* As triangle */ [[(-1)^(n-k)*Binomial(n-k+2, 2): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Oct 29 2017
-
Mathematica
Table[(-1)^(n - k)*Binomial[n - k + 2, 2], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 29 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1((-1)^(n-k)*binomial(n-k+2,2), ", "))) \\ G. C. Greubel, Oct 29 2017
Formula
Number triangle T(n, k) = [k<=n]*(-1)^(n-k)*binomial(n-k+2, 2).
Recurrence: T(n, k) = - T(n-1, k) + (-1)^(n-k)*(n-k+1), for n >= 0, and k = 0..n. - Wolfdieter Lang, Apr 06 2020
Comments