A122437 Allowable values of the "dropping time" of the Collatz (3x+1) iteration.
1, 3, 6, 8, 11, 13, 16, 19, 21, 24, 26, 29, 32, 34, 37, 39, 42, 44, 47, 50, 52, 55, 57, 60, 63, 65, 68, 70, 73, 75, 78, 81, 83, 86, 88, 91, 94, 96, 99, 101, 104, 106, 109, 112, 114, 117, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145, 148, 150, 153, 156, 158, 161
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Floor[1+Range[0,100]*(1+Log[2,3])] (* T. D. Noe, Sep 08 2006 *) Map[Length[RealDigits[ #, 2][[1]]] &, Table[10^i, {i, 0, 50}]] (* Julio Cesar de la Yncera, Mar 28 2009 *)
-
PARI
a(n)=logint(3^(n-1),2)+n \\ Ruud H.G. van Tol, Nov 04 2022
Formula
a(1) = 1, a(n+1) = a(n) + A022921(n-1) + 1.
a(n+1) = floor(1 + n + n*log(3)/log(2)). - T. D. Noe, Sep 08 2006
a(n) = a(n-1)+2 if 3^(n-1) < 2^(a(n-1)+2-(n-1)); a(n) = a(n-1)+3 otherwise. - V. Barbera, Aug 12 2025
Extensions
Comment corrected and edited by Jon E. Schoenfield, Feb 27 2014
Comments