A122528 Minimal number k such that (2k)^(2^n) + 1 is prime, but (2k)^(2^m) + 1 is composite for m < n.
1, 7, 17, 76, 22, 57, 137, 117, 307, 671, 412, 1279, 767, 35926, 50915, 35453, 24297, 114094, 12259, 37949, 459722
Offset: 0
Examples
a(0) = 1 because (2*1)^(2^0) + 1 = 2 + 1 = 3 is prime. a(1) = 7 because (2*7)^(2^1) + 1 = 14^2 + 1 = 197 is prime but 14 + 1 = 15 is composite.
Links
- Yves Gallot et al., Generalized Fermat Prime Search
- PrimeGrid, GFN Prime Search Status and History.
Programs
-
PARI
a(n)=for(k=1,+oo,if(ispseudoprime((2*k)^(2^n)+1),for(m=0,n-1,ispseudoprime((2*k)^(2^m)+1)&&next(2));return(k))) \\ Jeppe Stig Nielsen, Mar 10 2018
Extensions
Definition corrected by T. D. Noe, May 14 2008
a(9) through a(16) from the extensive tables of generalized Fermat primes compiled by Yves Gallot and others. - T. D. Noe, May 14 2008
a(17)-a(20) from Jeppe Stig Nielsen, Mar 10 2018
Comments