cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A147607 Expansion of g.f.: 1/((1 - 2*x^2 + x^4 + 2*x^6 - x^8)*(1 - 2*x^2 - x^4 + 2*x^6 - x^8)).

Original entry on oeis.org

1, 0, 4, 0, 12, 0, 28, 0, 59, 0, 116, 0, 228, 0, 460, 0, 968, 0, 2092, 0, 4564, 0, 9908, 0, 21309, 0, 45444, 0, 96484, 0, 204700, 0, 434999, 0, 926440, 0, 1976344, 0, 4218936, 0, 9005328, 0, 19212728, 0, 40970200, 0, 87341032, 0, 186180665, 0, 396899620
Offset: 0

Views

Author

Roger L. Bagula, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-2*x^2+x^4 +2*x^6-x^8)*(1-2*x^2-x^4+2*x^6-x^8)) )); // G. C. Greubel, Oct 24 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-4 x^2+4 x^4+4 x^6-11 x^8+4 x^10+4 x^12-4 x^14+x^16),{x,0,60}],x] (* or *) LinearRecurrence[ {0,4,0,-4,0,-4,0,11,0,-4,0,-4,0,4,0,-1},{1,0,4,0,12,0,28,0,59,0,116,0,228,0,460,0},60] (* Harvey P. Dale, Apr 03 2013 *)
  • SageMath
    def A147607_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-2*x^2+x^4+2*x^6-x^8)*(1-2*x^2-x^4+2*x^6-x^8)) ).list()
    A147607_list(60) # G. C. Greubel, Oct 24 2022

Formula

G.f.: 1/(1 - 4*x^2 + 4*x^4 + 4*x^6 - 11*x^8 + 4*x^10 + 4*x^12 - 4*x^14 + x^16).
a(n) = 4*a(n-2) - 4*a(n-4) - 4*a(n-6) + 11*a(n-8) - 4*a(n-10) - 4*a(n-12) + 4*a(n-14) - a(n-16) with a(0)=1, a(1)=0, a(2)=4, a(3)=0, a(4)=12, a(5)=0, a(6)=28, a(7)=0, a(8)=59, a(9)=0, a(10)=116, a(11)=0, a(12)=228, a(13)=0, a(14)=460, a(15)=0. - Harvey P. Dale, Apr 03 2013
G.f.: -1/(x^8*f(x)*f(1/x)), where f(x) = -1 + 2*x^2 - x^4 - 2*x^6 + x^8. - G. C. Greubel, Oct 24 2022

Extensions

Definition corrected by N. J. A. Sloane, Nov 09 2008

A122581 a(n) = a(n - 1) - 2*a(n - 2) + a(n - 3) - 4*a(n - 4) + 2*a(n - 5).

Original entry on oeis.org

1, 1, 1, 1, 1, -2, -5, -2, 4, 13, 19, -5, -50, -65, -20, 118, 283, 187, -311, -914, -1001, 334, 3040, 4405, 835, -8273, -17030, -11189, 20068, 60178, 60427, -29165, -192491, -274310, -39845, 553798, 1070812, 635629, -1341437, -3836765, -3693914, 2237287, 12425356, 16921054, 1409755, -36343973
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2006

Keywords

Comments

This recursion is inspired by Ulam's early experiments in derivative recursions.

Crossrefs

Programs

  • Maple
    A122581:= proc(n) option remember; if n <= 5 then 1; else A122581(n-1) -2*A122581(n-2)+A122581(n-3)+2*(-2*A122581(n-4)+A122581(n-5)); fi; end: seq(A122581(n),n=1..50) ; # R. J. Mathar, Sep 18 2007
  • Mathematica
    a[n_]:= a[n]= If[n<6, 1, a[n-1] -2*a[n-2] +a[n-3] -2*(2*a[n-4] -a[n-5])];
    Table[a[n], {n,50}]
  • Sage
    @CachedFunction # a=A122581
    def a(n): return 1 if (n<6) else a(n-1) -2*a(n-2) +a(n-3) -4*a(n-4) +2*a(n-5)
    [a(n) for n in (1..50)] # G. C. Greubel, Nov 28 2021

Formula

G.f.: x*(1+2*x^2+x^3+5*x^4)/(1-x+2*x^2-x^3+4*x^4-2*x^5). - R. J. Mathar, Nov 18 2007

Extensions

Edited by N. J. A. Sloane, Oct 01 2006
More terms from R. J. Mathar, Sep 18 2007

A122582 a(n) = a(n - 1) - 2*a(n - 2) + a(n - 3) - 2*a(n - 4) + a(n - 5).

Original entry on oeis.org

1, 1, 1, 1, 1, -1, -3, -1, 3, 5, 3, -5, -13, -7, 13, 27, 15, -25, -61, -37, 57, 135, 81, -119, -297, -191, 257, 661, 431, -549, -1455, -991, 1169, 3225, 2257, -2497, -7115, -5145, 5299, 15725, 11715, -11261, -34709, -26623, 23829, 76603, 60479, -50361, -168997, -137173, 106105, 372655, 310905, -222951
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2006

Keywords

Comments

This recursion is inspired by Ulam's early experiments in derivative recursions.

Crossrefs

Programs

  • Magma
    [n le 5 select 1 else Self(n-1) -2*Self(n-2) +Self(n-3) -2*Self(n-4) +Self(n-5): n in [1..50]]; // G. C. Greubel, Nov 28 2021
    
  • Mathematica
    a[n_]:= a[n]= If[n<6, 1, a[n-1] -2*a[n-2] +a[n-3] -2*a[n-4] +a[n-5]];
    Table[a[n], {n, 60}]
    Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{1,-2,1,-2,1},#]}]&, {1,1,1,1,1},60]][[1]]  (* Harvey P. Dale, Mar 21 2011 *)
  • Sage
    @CachedFunction # a=A122582
    def a(n): return 1 if (n<6) else a(n-1) -2*a(n-2) +a(n-3) -2*a(n-4) +a(n-5)
    [a(n) for n in (1..50)] # G. C. Greubel, Nov 28 2021

Formula

G.f.: x*(1+2*x^2+x^3+3*x^4)/(1-x+2*x^2-x^3+2*x^4-x^5). - R. J. Mathar, May 12 2013

Extensions

Edited by N. J. A. Sloane, Oct 01 2006, Jan 01 2007

A122583 a(n) = a(n - 1) - 2*a(n - 2) + a(n - 3) - 6*a(n - 4) + 3*a(n - 5).

Original entry on oeis.org

1, 1, 1, 1, 1, -3, -7, -3, 5, 25, 45, -3, -107, -191, -175, 253, 1045, 1189, -171, -3547, -7527, -4603, 11497, 33945, 40869, -10487, -141071, -248407, -120131, 421141, 1227961, 1332777, -726439, -5051271, -8369959, -3306635, 16738977, 43110597, 41391949, -33360335, -183387403, -283721435
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2006

Keywords

Comments

This recursion is inspired by Ulam's early experiments in derivative recursions.

Crossrefs

Programs

  • Magma
    [n le 5 select 1 else Self(n-1) -2*Self(n-2) +Self(n-3) -6*Self(n-4) +3*Self(n-5): n in [1..50]]; // G. C. Greubel, Nov 28 2021
    
  • Maple
    A122583:= proc(n) option remember; if n <= 5 then 1; else A122583(n-1) -2*A122583(n-2)+A122583(n-3)+3*(-2*A122583(n-4)+A122583(n-5)); fi; end: seq(A122583(n), n=1..50) ; # R. J. Mathar, Sep 18 2007
  • Mathematica
    a[n_]:= a[n]= If[n<6, 1, a[n-1] -2*a[n-2] +a[n-3] -6*a[n-4] +3*a[n-5]];
    Table[a[n], {n, 50}]
    LinearRecurrence[{1,-2,1,-6,3},{1,1,1,1,1},50] (* Harvey P. Dale, Jun 09 2025 *)
  • Sage
    @CachedFunction # a=A122583
    def a(n): return 1 if (n<6) else a(n-1) -2*a(n-2) +a(n-3) -6*a(n-4) +3*a(n-5)
    [a(n) for n in (1..50)] # G. C. Greubel, Nov 28 2021

Formula

G.f.: x*(1 +2*x^2 +x^3 +7*x^4)/(1 -x +2*x^2 -x^3 +6*x^4 -3*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009

Extensions

Edited by N. J. A. Sloane, Oct 01 2006
More terms from R. J. Mathar, Sep 18 2007

A322779 132-avoiding permutations whose squares are also 132-avoiding.

Original entry on oeis.org

1, 2, 5, 12, 24, 50, 101, 202, 398, 806, 1568, 3148, 6198, 12306, 24223, 48314
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2019

Keywords

Crossrefs

Cf. A122584.

Extensions

Name clarified by Colin Defant, Apr 30 2019
Showing 1-5 of 5 results.