A122651 Number of partitions of n into distinct parts, with each part divisible by the next.
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 5, 5, 4, 6, 6, 4, 6, 6, 6, 9, 7, 4, 7, 8, 7, 9, 9, 6, 10, 10, 7, 10, 8, 8, 12, 9, 7, 12, 13, 8, 12, 12, 9, 16, 12, 5, 11, 13, 13, 15, 13, 9, 12, 15, 14, 17, 13, 7, 14, 14, 11, 21, 18, 13, 21, 16, 10, 14, 16, 12, 15, 15, 10, 21, 20, 13, 20, 16, 17, 25, 17, 9, 19
Offset: 0
Examples
a(9) = 4 : [9], [8,1], [6,3], [6,2,1]. a(15) = 6 : [15], [14,1], [12,3], [12,2,1], [10,5], [8,4,2,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
A122651r := proc(n,pmax,dv) option remember ; local a,d ; a := 0 ; for d in dv do if d = n and d <= pmax then a := a+1 ; elif d < pmax and n-d > 0 then a := a+A122651r(n-d,d-1,numtheory[divisors](d) minus {d} ) ; fi; od: a ; end: A122651 := proc(n) local i; A122651r(n,n, convert([seq(i,i=1..n)],set) ) ; end: for n from 1 to 120 do printf("%d,",A122651(n)) ; od: # R. J. Mathar, May 22 2009 # second Maple program: with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(b((n-d)/d), d=divisors(n) minus{1})) end: a:= n-> `if`(n=0, 1, b(n)+b(n-1)); seq(a(n), n=0..200); # Alois P. Heinz, Mar 28 2011
-
Mathematica
b[0] = 1; b[n_] := b[n] = Sum[b[(n - d)/d], {d, Divisors[n] // Rest}]; a[0] = 1; a[n_] := b[n] + b[n-1]; Table[a[n], {n, 0, 84}] (* Jean-François Alcover, Mar 26 2013, after Alois P. Heinz *)
-
PARI
{ a(n,m=0) = local(r=0); if(n==0,return(1)); fordiv(n,d, if(d<=m,next); r+=a((n-d)\d,1); ); r } /* Max Alekseyev */
Extensions
More terms from R. J. Mathar, May 22 2009
a(0)=1 prepended by Max Alekseyev, Nov 13 2009