cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122651 Number of partitions of n into distinct parts, with each part divisible by the next.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 5, 5, 4, 6, 6, 4, 6, 6, 6, 9, 7, 4, 7, 8, 7, 9, 9, 6, 10, 10, 7, 10, 8, 8, 12, 9, 7, 12, 13, 8, 12, 12, 9, 16, 12, 5, 11, 13, 13, 15, 13, 9, 12, 15, 14, 17, 13, 7, 14, 14, 11, 21, 18, 13, 21, 16, 10, 14, 16, 12, 15, 15, 10, 21, 20, 13, 20, 16, 17, 25, 17, 9, 19
Offset: 0

Views

Author

Keywords

Examples

			a(9)  = 4 : [9], [8,1], [6,3], [6,2,1].
a(15) = 6 : [15], [14,1], [12,3], [12,2,1], [10,5], [8,4,2,1].
		

Crossrefs

Programs

  • Maple
    A122651r := proc(n,pmax,dv) option remember ; local a,d ; a := 0 ; for d in dv do if d = n and d <= pmax then a := a+1 ; elif d < pmax and n-d > 0 then a := a+A122651r(n-d,d-1,numtheory[divisors](d) minus {d} ) ; fi; od: a ; end: A122651 := proc(n) local i; A122651r(n,n, convert([seq(i,i=1..n)],set) ) ; end: for n from 1 to 120 do printf("%d,",A122651(n)) ; od:  # R. J. Mathar, May 22 2009
    # second Maple program:
    with(numtheory):
    b:= proc(n) option remember;
          `if`(n=0, 1, add(b((n-d)/d), d=divisors(n) minus{1}))
        end:
    a:= n-> `if`(n=0, 1, b(n)+b(n-1));
    seq(a(n), n=0..200);  # Alois P. Heinz, Mar 28 2011
  • Mathematica
    b[0] = 1; b[n_] := b[n] = Sum[b[(n - d)/d], {d, Divisors[n] // Rest}]; a[0] = 1; a[n_] := b[n] + b[n-1]; Table[a[n], {n, 0, 84}] (* Jean-François Alcover, Mar 26 2013, after Alois P. Heinz *)
  • PARI
    { a(n,m=0) = local(r=0); if(n==0,return(1)); fordiv(n,d, if(d<=m,next); r+=a((n-d)\d,1); ); r } /* Max Alekseyev */

Formula

For n>0, a(n) = A167865(n) + A167865(n-1).

Extensions

More terms from R. J. Mathar, May 22 2009
a(0)=1 prepended by Max Alekseyev, Nov 13 2009