cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A157197 Numbers k such that p(k) + p(k+1) + p(k+2) = A122706(n)^n, where p(k) is a k-th prime.

Original entry on oeis.org

3, 6, 85, 20877, 52086501, 10988577
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2009

Keywords

Examples

			a(1) = 3 because p(3) + p(4) + p(5) = 5 + 7 + 11 = 23 = A122706(1)^1.
a(2) = 6 because p(6) + p(7) + p(8) = 13 + 17 + 19 = 49 = 7^2 = A122706(2)^2.
		

Crossrefs

Extensions

a(5)-a(6) from Max Alekseyev, Dec 13 2011

A123984 Primes p such that p^3 is a sum of three successive primes, or primes in A076306(n).

Original entry on oeis.org

11, 47, 223, 229, 313, 353, 397, 409, 571, 641, 661, 887, 1051, 1297, 1451, 1789, 2459, 2671, 2801, 2851, 3671, 4463, 4583, 4813, 4861, 5167, 5273, 5437, 5479, 5717, 5879, 6661, 6679, 6763, 6779, 7019, 7109, 7393, 7517, 7589, 7639, 7681, 7993, 8179, 8191, 9241
Offset: 1

Views

Author

Alexander Adamchuk, Oct 30 2006

Keywords

Comments

A076306(n) = {11, 47, 145, 223, 229, 267, 313, 353, ...} Numbers n such that n^3 is a sum of three successive primes.

Crossrefs

Cf. A076306, A076304. Cf. A122560 - Primes p such that p^2 is a sum of three successive primes. Cf. A122706 - Smallest prime p such that p^n is equal to the sum of 3 consecutive primes.

Programs

  • Mathematica
    spQ[n_]:=Module[{n3=n^3,a,b,c,d,e},c=NextPrime[Floor[n3/3]];b=NextPrime[ c,-1];a=NextPrime[b,-1];d=NextPrime[c];e=NextPrime[d];n3==a+b+c || n3==b+c+d || n3==c+d+e];Select[Prime[Range[1200]],spQ] (* Harvey P. Dale, Sep 23 2011 *)
  • PARI
    { p1=prime(1) ; p2=prime(2) ; p3=prime(3) ; n3=p1+p2+p3 ; for(i=1,100000000, if( ispower(n3,3,&n), if(isprime(n), print(n) ) ; ) ; n3 -= p1 ; p1=p2 ; p2=p3 ; p3=nextprime(p3+1) ; n3 += p3 ; ) ; } \\ R. J. Mathar, Jan 13 2007

Formula

A000040 INTERSECT A076306. - R. J. Mathar, Jan 13 2007

Extensions

More terms from R. J. Mathar, Jan 13 2007
a(15)-a(46) from Donovan Johnson, Apr 27 2008

A123994 Smallest number k such that prime(n)^k is a sum of 3 consecutive primes.

Original entry on oeis.org

64, 57, 2, 2, 107, 203, 1133, 1, 2, 1
Offset: 2

Views

Author

Alexander Adamchuk, Oct 31 2006, Nov 02 2006

Keywords

Comments

a(13) through a(23): { 1, 2, 3, 8, 1, 4, 6, 1, 729, 5, 1 }.
a(12) > 5387. a(24) > 3320.
Smallest prime p such that p^n is equal to the sum of 3 consecutive primes is given by A122706(n).

Examples

			a(1) does not exist because there is no power of 2 that is a sum of 3 consecutive primes.
prime(5)^2 = 11^2 = 121 can be written as 37+41+43, therefore a(5)=2.
		

Crossrefs

Cf. A122706.

Programs

  • PARI
    { A123994(n) = my(k,t1,t2,t3,m); k=0; while(1, k++; m=prime(n)^k; t1=precprime(m/3); t2=nextprime(m/3); t3=m-t1-t2; if( ispseudoprime(t3) && ( (t3t2 && t3==nextprime(t2+1)) ), return(k)); ); }

Extensions

Corrected by R. J. Mathar, Jan 13 2007
a(8)-a(11) from Max Alekseyev, Apr 24 2010
Showing 1-3 of 3 results.