A122709 a(0)=1; thereafter a(n) = 9*n - 3.
1, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
GAP
a:=[6,15];; for n in [3..60] do a[n]:=2*a[n-1]-a[n-2]; od; Concatenation([1],a); # Muniru A Asiru, Oct 21 2018
-
Maple
seq(coeff(series(((1+2*x)/(1-x))^2,x,n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Oct 21 2018
-
Mathematica
Join[{1},LinearRecurrence[{2,-1},{6,15},60]] (* Harvey P. Dale, Jun 12 2012 *)
-
PARI
a(n)=max(9*n-3,1) \\ Charles R Greathouse IV, Jan 17 2012
-
PARI
Vec((1 + 2*x)^2 / (1 - x)^2 + O(x^100)) \\ Colin Barker, Jan 22 2018
Formula
a(0)=1, a(n) = 9*n - 3 = A008591(n) - 3 for n > 0.
a(n) = 2*a(n-1) - a(n-2) for n > 2; a(0)=1, a(1)=6, a(2)=15.
a(n) = a(n-1) + 9 for n > 1; a(0)=1, a(1)=6.
G.f.: ((1 + 2*x)/(1 - x))^2.
Equals binomial transform of [1, 5, 4, -4, 4, -4, 4, ...]. - Gary W. Adamson, Dec 10 2007
a(n) = A017233(n-1) for n > 0. - Georg Fischer, Oct 21 2018
E.g.f.: exp(x)*(9*x - 3) + 4. - Stefano Spezia, Mar 07 2023
Extensions
Edited by N. J. A. Sloane, Jan 23 2018
Comments