cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122709 a(0)=1; thereafter a(n) = 9*n - 3.

Original entry on oeis.org

1, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483
Offset: 0

Views

Author

Philippe Deléham, Sep 23 2006

Keywords

Comments

Self-convolution of A122553.

Crossrefs

Cf. A017233 (9n+6), A008591, A122553.

Programs

  • GAP
    a:=[6,15];; for n in [3..60] do a[n]:=2*a[n-1]-a[n-2]; od; Concatenation([1],a); # Muniru A Asiru, Oct 21 2018
  • Maple
    seq(coeff(series(((1+2*x)/(1-x))^2,x,n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Oct 21 2018
  • Mathematica
    Join[{1},LinearRecurrence[{2,-1},{6,15},60]] (* Harvey P. Dale, Jun 12 2012 *)
  • PARI
    a(n)=max(9*n-3,1) \\ Charles R Greathouse IV, Jan 17 2012
    
  • PARI
    Vec((1 + 2*x)^2 / (1 - x)^2 + O(x^100)) \\ Colin Barker, Jan 22 2018
    

Formula

a(0)=1, a(n) = 9*n - 3 = A008591(n) - 3 for n > 0.
a(n) = 2*a(n-1) - a(n-2) for n > 2; a(0)=1, a(1)=6, a(2)=15.
a(n) = a(n-1) + 9 for n > 1; a(0)=1, a(1)=6.
G.f.: ((1 + 2*x)/(1 - x))^2.
Equals binomial transform of [1, 5, 4, -4, 4, -4, 4, ...]. - Gary W. Adamson, Dec 10 2007
a(n) = A017233(n-1) for n > 0. - Georg Fischer, Oct 21 2018
E.g.f.: exp(x)*(9*x - 3) + 4. - Stefano Spezia, Mar 07 2023

Extensions

Edited by N. J. A. Sloane, Jan 23 2018