A122743 Number of normalized polynomials of degree n in GF(2)[x,y].
1, 6, 56, 960, 31744, 2064384, 266338304, 68451041280, 35115652612096, 35993612646875136, 73750947497819242496, 302157667927362455470080, 2475577847115856892504571904, 40562343327224770087344704323584, 1329187430965708569562959165777772544
Offset: 0
Keywords
Examples
Let esp abbreviate "elementary symmetric polynomial". Then 0th esp of {2} is 1. 1st esp of {2,4} is 2+4 = 6. 2nd esp of {2,4,8} is 2*4 + 2*8 + 4*8 = 56.
References
- Joachim von zur Gathen, Alfredo Viola, and Konstantin Ziegler, Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields, in: A. López-Ortiz (Ed.), LATIN 2010: Theoretical Informatics, Proceedings of the 9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010, in: Lecture Notes in Comput. Sci., vol. 6034, Springer, Berlin, Heidelberg, 2010, pp. 243-254 (Extended Abstract). Final version to appear in SIAM J. Discrete Math.
Links
- Arnaud Bodin, Number of irreducible polynomials in several variables over finite fields, arXiv:0706.0157 [math.AC], 2007; Amer. Math. Monthly, 115 (2008), 653-660.
- Joachim von zur Gathen, Alfredo Viola, and Konstantin Ziegler, Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields, arXiv:0912.3312 [math.AC], 2009-2013.
Crossrefs
Programs
-
Magma
[2^((n+1)*(n+2) div 2) - 2^(n*(n+1) div 2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
-
Maple
seq(2^((n*(1+n))/2)*(2^(1+n)-1), n=0..14); # Peter Luschny, Sep 19 2017
-
Mathematica
f[k_] := 2^k; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 16}] (* A122743 *) (* Clark Kimberling, Dec 29 2011 *)
-
PARI
a(n) = 2^((n+1)*(n+2)/2) - 2^(n*(n+1)/2); vector (100, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
Formula
a(n) = 2^((n+1)(n+2)/2) - 2^(n(n+1)/2). - Paul D. Hanna, Apr 08 2009
E.g.f.: d(G(2x)-G(x))/dx where G(x) is the e.g.f. for A006125. - Geoffrey Critzer, Sep 12 2013
From Emanuele Munarini, Sep 14 2017: (Start)
(2^(n+1)-1)*a(n+1) - 2^(n+1)*(2^(n+2)-1)*a(n) = 0.
a(n+1) - (2^(n+2)+1)*a(n) = 2^(binomial(n+1,2)).
a(n+2) - (5*2^(n+1)+1)*a(n+1) + 2^(n+1)*(2^(n+2)+1)*a(n) = 0. (End)
Extensions
Edited, terms and links added by Johannes W. Meijer, Oct 10 2010
Comments corrected, reference added, and example edited by Konstantin Ziegler, Dec 04 2012
a(14) from Vincenzo Librandi, Oct 01 2015
Comments