cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122931 Row sums of triangular array A122930.

Original entry on oeis.org

1, 2, 7, 18, 50, 132, 351, 924, 2431, 6380, 16732, 43848, 114869, 300846, 787815, 2062830, 5401054, 14140940, 37022755, 96928920, 253766591, 664375032, 1739365272, 4553731728, 11921847625, 31211839802, 81713718151, 213929389674
Offset: 1

Views

Author

Alford Arnold, Sep 20 2006

Keywords

Comments

Also sums of the natural numbers with A000045 entries per row: for example, 1 2 3+4 5+6+7 8+9+10+11+12.

Crossrefs

Programs

  • Maple
    A000045 := proc(n) if n <= 1 then RETURN(n) ; else RETURN( A000045(n-1)+A000045(n-2)) ; fi ; end: A000071 := proc(n) RETURN(A000045(n)-1) ; end: A122931 := proc(n) local a45 ; a45 := A000045(n) ; RETURN (a45*(A000071(n+1)+(a45+1)/2)) ; end: for n from 1 to 30 do printf("%d,",A122931(n)) ; od ; # R. J. Mathar, Oct 07 2006
  • Mathematica
    (#[[2]]^2-#[[1]]^2-#[[2]]+#[[1]])/2&/@Partition[Fibonacci[ Range[ 2,30]],2,1] (* or *) Module[{nn=30,fib},fib=Fibonacci[Range[nn]];Total/@ TakeList[ Range[Total[ fib]], fib]](* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Nov 19 2018 *)

Formula

From R. J. Mathar, Oct 07 2006: (Start)
a(n) = Sum_{i=A000071(n+1)+1..A000071(n+2)} i.
a(n) = A000045(n)*floor(A000071(n+1) + (A000045(n)+1)/2). (End)
a(n) = Sum_{k=1..n} A000045(k)^2*A000045(n-k+1). - Gerald McGarvey, Nov 08 2007
a(n) = (F(n+2)^2 - F(n+1)^2 - F(n+2) + F(n+1))/2 where F(n)=Fibonacci(n). - Gary Detlefs, Mar 10 2011
G.f.: x*(1-x)/((1+x)*(1-3*x+x^2)*(1-x-x^2)). - Colin Barker, Mar 12 2012
a(n) = F(n)*(F(n+3)-1)/2. - J. M. Bergot, Mar 16 2013
a(n) = (F(n+1) - 1)*(F(n+2) + 1)/2 + (n mod 2). - Greg Dresden, Sep 25 2021
a(n) = A301809(n+1) - A000045(n) = A191797(n+2) - A191797(n+1). - J.S. Seneschal, Jul 07 2025

Extensions

More terms from R. J. Mathar, Oct 07 2006