cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122971 30th powers: a(n) = n^30.

Original entry on oeis.org

0, 1, 1073741824, 205891132094649, 1152921504606846976, 931322574615478515625, 221073919720733357899776, 22539340290692258087863249, 1237940039285380274899124224
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (squares), A000578 (cubes), A000584 (5th powers).

Programs

  • Mathematica
    Range[0,10]^30 (* Harvey P. Dale, Mar 06 2019 *)
  • PARI
    (A122971(n)=n^30); is_A122971(N)=ispower(N,30) \\ M. F. Hasler, Jul 24 2022
    
  • Python
    def A122971(n): return n**30
    from sympy import nextprime
    def is_A122971(N, k=30): # 2nd opt. arg to check for powers other than 30
        p = 2
        while N >= p**k:
            for e in range(N):
                if N % p: break
                N //= p
            if e % k: return False
            p = nextprime(p)
        return N < 2  #  M. F. Hasler, Jul 24 2022

Formula

Totally multiplicative sequence with a(p) = p^30 for prime p. Multiplicative sequence with a(p^e) = p^(30e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-30).
Sum_{n>=1} 1/a(n) = zeta(30) = 6892673020804*Pi^30/5660878804669082674070015625.
Sum_{n>=1} (-1)^(n+1)/a(n) = 536870911*zeta(30)/536870912 = 925118910976041358111*Pi^30/759790291646040068357842010112000000. (End)
Intersection of A000290 and A000578 and A000584. - M. F. Hasler, Jul 24 2022