A122971 30th powers: a(n) = n^30.
0, 1, 1073741824, 205891132094649, 1152921504606846976, 931322574615478515625, 221073919720733357899776, 22539340290692258087863249, 1237940039285380274899124224
Offset: 0
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Range[0,10]^30 (* Harvey P. Dale, Mar 06 2019 *)
-
PARI
(A122971(n)=n^30); is_A122971(N)=ispower(N,30) \\ M. F. Hasler, Jul 24 2022
-
Python
def A122971(n): return n**30 from sympy import nextprime def is_A122971(N, k=30): # 2nd opt. arg to check for powers other than 30 p = 2 while N >= p**k: for e in range(N): if N % p: break N //= p if e % k: return False p = nextprime(p) return N < 2 # M. F. Hasler, Jul 24 2022
Formula
Totally multiplicative sequence with a(p) = p^30 for prime p. Multiplicative sequence with a(p^e) = p^(30e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-30).
Sum_{n>=1} 1/a(n) = zeta(30) = 6892673020804*Pi^30/5660878804669082674070015625.
Sum_{n>=1} (-1)^(n+1)/a(n) = 536870911*zeta(30)/536870912 = 925118910976041358111*Pi^30/759790291646040068357842010112000000. (End)