A123113 Main diagonal of prime power sum array.
2, 13, 280, 17489, 48909526, 13423779037, 232729381165100, 146367546237420097, 8864305651125125485354, 100000100010100010100010101101, 193529735150413879906083607547512
Offset: 1
Examples
a(1) = 2 = 1 + 1^2. a(2) = 13 = 1 +2^2 +2^3. a(3) = 280 = 1 +3^2 +3^3 +3^5. a(4) = 17489 = 1 +4^2 +4^3 +4^5 +4^7. a(5) = 48909526 = 1 +5^2 +5^3 +5^5 +5^7 +5^11. a(6) = 13423779037 = 1 +6^2 +6^3 +6^5 +6^7 +6^11 +6^13. a(7) = 232729381165100 = 1 +7^2 +7^3 +7^5 +7^7 +7^11 +7^13 +7^17. a(8) = 146367546237420097 = 1 +8^2 +8^3 +8^5 +8^7 +8^11 +8^13 +8^17 +8^19.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..75
Programs
-
Magma
[1 + (&+[n^NthPrime(j): j in [1..n]]): n in [1..15]]; // G. C. Greubel, Jul 21 2021
-
Mathematica
Table[Total[n^Prime[Range[n]]]+1,{n,15}] (* Harvey P. Dale, Jan 18 2017 *)
-
Sage
[1 + sum(n^nth_prime(j) for j in (1..n)) for n in (1..15)] # G. C. Greubel, Jul 21 2021
Formula
a(n) = 1 + n^2 + n^3 + n^5 + ... + n^prime(n).
Comments