cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123113 Main diagonal of prime power sum array.

Original entry on oeis.org

2, 13, 280, 17489, 48909526, 13423779037, 232729381165100, 146367546237420097, 8864305651125125485354, 100000100010100010100010101101, 193529735150413879906083607547512
Offset: 1

Views

Author

Jonathan Vos Post, Sep 28 2006

Keywords

Comments

Main diagonal of the infinite array T(k,n) = 1 + Sum_{i=1..k} n^prime(i).
a(n) is prime for n = 1, 2, 4 -- what is the next prime in the sequence?
The next prime in the sequence is for n = 20. It has 93 digits. - Harvey P. Dale, Jan 18 2017

Examples

			a(1) = 2 = 1 + 1^2.
a(2) = 13 = 1 +2^2 +2^3.
a(3) = 280 = 1 +3^2 +3^3 +3^5.
a(4) = 17489 = 1 +4^2 +4^3 +4^5 +4^7.
a(5) = 48909526 = 1 +5^2 +5^3 +5^5 +5^7 +5^11.
a(6) = 13423779037 = 1 +6^2 +6^3 +6^5 +6^7 +6^11 +6^13.
a(7) = 232729381165100 = 1 +7^2 +7^3 +7^5 +7^7 +7^11 +7^13 +7^17.
a(8) = 146367546237420097 = 1 +8^2 +8^3 +8^5 +8^7 +8^11 +8^13 +8^17 +8^19.
		

Crossrefs

Programs

  • Magma
    [1 + (&+[n^NthPrime(j): j in [1..n]]): n in [1..15]]; // G. C. Greubel, Jul 21 2021
    
  • Mathematica
    Table[Total[n^Prime[Range[n]]]+1,{n,15}] (* Harvey P. Dale, Jan 18 2017 *)
  • Sage
    [1 + sum(n^nth_prime(j) for j in (1..n)) for n in (1..15)] # G. C. Greubel, Jul 21 2021

Formula

a(n) = 1 + n^2 + n^3 + n^5 + ... + n^prime(n).