cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123165 Row sums of A123163.

Original entry on oeis.org

1, 1, 2, 5, 11, 143, 1847, 24127, 2101931, 96398196, 9362963203, 3376252046640, 551993132054154, 434634824535802596, 528116646162507517308, 372831439174848001477184, 2029862948426766042724907818
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial((n-k)^2, k^2): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jul 19 2023
    
  • Mathematica
    A123163[n_, k_]= ((n-k)^2)!/((k^2)!(n^2-2*n*k)!);
    Table[Sum[A123163[n,k], {k,0,n/2}], {n,0,20}]
    Table[Sum[Binomial[(n-k)^2,k^2], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 04 2014 *)
  • PARI
    {a(n) = sum(k=0, n\2, binomial((n-k)^2, k^2))} \\ Seiichi Manyama, Jan 28 2019
    
  • SageMath
    def A123165(n): return sum(binomial((n-k)^2, k^2) for k in range(n//2+1))
    [A123165(n) for n in range(31)] # G. C. Greubel, Jul 19 2023

Formula

Limit_{n-> oo} a(n)^(1/n^2) = (1-2*r)^r / r^(2*r) = 1.2915356633069917227119166..., where r = A323778 = 0.365498498219858044579736... is the root of the equation (1-r)^(2-2*r) * r^(2*r) = 1-2*r. - Vaclav Kotesovec, Mar 04 2014

Extensions

Edited by N. J. A. Sloane, Oct 04 2006