cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A206851 L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2)*x^k = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 3, 7, 15, 231, 2763, 37773, 3347359, 145164760, 15115517783, 5300285945494, 841490209145991, 700215432847179640, 821522962294608211319, 580955012898669141073842, 3240132942509582109732641935, 12114306457535986210506222037102
Offset: 1

Views

Author

Paul D. Hanna, Feb 15 2012

Keywords

Comments

Equals the logarithmic derivative of A206850.

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 231*x^5/5 + 2763*x^6/6 +...
where exponentiation yields the g.f. of A206850:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 56*x^5 + 522*x^6 + 5972*x^7 +...
By definition, the l.g.f. equals the series:
L(x) = (C(1,0) + C(1,1)*x)*x
+ (C(4,0) + C(4,1)*x + C(4,4)*x^2)*x^2/2
+ (C(9,0) + C(9,1)*x + C(9,4)*x^2 + C(9,9)*x^3)*x^3/3
+ (C(16,0) + C(16,1)*x + C(16,4)*x^2 + C(16,9)*x^3 + C(16,16)*x^4)*x^4/4
+ (C(25,0) + C(25,1)*x + C(25,4)*x^2 + C(25,9)*x^3 + C(25,16)*x^4 + C(25,25)*x^5)*x^5/5 +...
More explicitly,
L(x) = (1 + 1*x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 9*x + 126*x^2 + 1*x^3)*x^3/3
+ (1 + 16*x + 1820*x^2 + 11440*x^3 + 1*x^4)*x^4/4
+ (1 + 25*x + 12650*x^2 + 2042975*x^3 + 2042975*x^4 + 1*x^5)*x^5/5
+ (1 + 36*x + 58905*x^2 + 94143280*x^3 + 7307872110*x^4 + 600805296*x^5 + 1*x^6)*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Binomial[(n-k)^2, k^2]/(n-k),{k,0,Floor[n/2]}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k^2)*x^k)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=n*sum(k=0,n\2, binomial((n-k)^2, k^2)/(n-k))}
    for(n=1, 20, print1(a(n), ", "))

Formula

a(n) = n * Sum_{k=0..[n/2]} binomial((n-k)^2, k^2)/(n-k).
Limit n->infinity a(n)^(1/n^2) = (1-2*r)^r / r^(2*r) = 1.2915356633069917227119166349..., where r = A323778 = 0.365498498219858044579... is the root of the equation (1-r)^(2-2*r) * r^(2*r) = 1-2*r. - Vaclav Kotesovec, Mar 03 2014

A226234 Triangle defined by T(n,k) = binomial(n^2, k^2), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 126, 1, 1, 16, 1820, 11440, 1, 1, 25, 12650, 2042975, 2042975, 1, 1, 36, 58905, 94143280, 7307872110, 600805296, 1, 1, 49, 211876, 2054455634, 3348108992991, 63205303218876, 262596783764, 1, 1, 64, 635376, 27540584512, 488526937079580, 401038568751465792, 1118770292985239888, 159518999862720, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2013

Keywords

Comments

Row sums equal A206849.
Antidiagonal sums equal A123165.

Examples

			The triangle of coefficients C(n^2,k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 4, 1;
1, 9, 126, 1;
1, 16, 1820, 11440, 1;
1, 25, 12650, 2042975, 2042975, 1;
1, 36, 58905, 94143280, 7307872110, 600805296, 1;
1, 49, 211876, 2054455634, 3348108992991, 63205303218876, 262596783764, 1;
1, 64, 635376, 27540584512, 488526937079580, 401038568751465792, 1118770292985239888, 159518999862720, 1; ...
		

Crossrefs

Cf. related triangles: A228902(exp), A209330, A228832, A228836.

Programs

  • PARI
    {T(n,k)=binomial(n^2,k^2)}
    for(n=0,9,for(k=0,n,print1(T(n,k),", "));print(""))

A323778 Decimal expansion of the root of the equation (1-r)^(2-2*r) * r^(2*r) = 1-2*r.

Original entry on oeis.org

3, 6, 5, 4, 9, 8, 4, 9, 8, 2, 1, 9, 8, 5, 8, 0, 4, 4, 5, 7, 9, 7, 3, 6, 8, 7, 5, 4, 4, 6, 2, 9, 9, 0, 8, 8, 3, 2, 2, 7, 5, 8, 8, 0, 6, 9, 6, 3, 4, 6, 0, 2, 9, 5, 0, 1, 5, 9, 5, 5, 1, 6, 7, 6, 8, 2, 1, 1, 8, 8, 3, 6, 7, 4, 0, 8, 4, 8, 7, 3, 0, 0, 3, 5, 2, 2, 8, 4, 1, 0, 7, 4, 0, 8, 2, 1, 5, 4, 8, 5, 3, 8, 7, 5, 7, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.36549849821985804457973687544629908832275880696346029501595516768211883674...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-r)^(2-2*r) * r^(2*r) == 1-2*r, {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]

A228837 a(n) = Sum_{k=0..[n/2]} binomial((n-k)^2, (n-2*k)*k).

Original entry on oeis.org

1, 1, 2, 5, 38, 597, 14472, 554653, 44421258, 8933194659, 3408672951784, 1984802013951149, 1803179670478111304, 3323206887194925488269, 15156709454119350064982141, 132889643918499982093215167857, 1784438297905511051093397284187186
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2013

Keywords

Comments

Equals the antidiagonal sums of triangle A228836.

Crossrefs

Cf. variants: A209331, A228833, A123165.

Programs

  • Mathematica
    Table[Sum[Binomial[(n-k)^2, (n-2*k)*k],{k,0,Floor[n/2]}],{n,0,15}] (* Vaclav Kotesovec, Sep 05 2013 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial((n-k)^2, (n-2*k)*k))}
    for(n=0,30,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = ((1-r)^2/(r*(1-2*r)))^((1-3*r)*(1-r)/(3*(1-2*r))) = 1.36198508972775011599..., where r = 0.195220321930105755... is the root of the equation (1-3*r+3*r^2)^(3*(2*r-1)) = (r*(1-2*r))^(4*r-1) * (1-r)^(4*(r-1)). - Vaclav Kotesovec, added Sep 05 2013, simplified Mar 04 2014

A123163 Triangle T(n, k) = binomial((n-k)^2, k^2) read by rows.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 4, 0, 0, 1, 9, 1, 0, 0, 1, 16, 126, 0, 0, 0, 1, 25, 1820, 1, 0, 0, 0, 1, 36, 12650, 11440, 0, 0, 0, 0, 1, 49, 58905, 2042975, 1, 0, 0, 0, 0, 1, 64, 211876, 94143280, 2042975, 0, 0, 0, 0, 0, 1, 81, 635376, 2054455634, 7307872110, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Examples

			n\k | 0    1      2      3    4    5    6    7
----+--------------------------------------------
  0 | 1;
  1 | 1,   0;
  2 | 1,   1,     0;
  3 | 1,   4,     0,     0;
  4 | 1,   9,     1,     0,   0;
  5 | 1,  16,   126,     0,   0,   0;
  6 | 1,  25,  1820,     1,   0,   0,   0;
  7 | 1,  36, 12650, 11440,   0,   0,   0,   0;
		

Crossrefs

Programs

  • Magma
    [Binomial((n-k)^2, k^2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2023
    
  • Mathematica
    T[n_, k_]= (n^2-2*n*k+k^2)!/((k^2)!(n^2-2*n*k)!);
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten
    Flatten[Table[Binomial[(n-m)^2,m^2],{n,0,10},{m,0,n}]] (* Harvey P. Dale, Aug 08 2012 *)
  • SageMath
    flatten([[binomial((n-k)^2, k^2) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 18 2023

Formula

T(n, k) = (n^2 - 2*n*k + k^2)!/((k^2)!(n^2 - 2*n*k)!).
From G. C. Greubel, Jul 18 2023: (Start)
T(n, 0) = T(2*n, n) = 1.
T(n, n) = A000007(n).
Sum_{k=0..n} T(n, k) = A123165(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 04 2006
Showing 1-5 of 5 results.