cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123194 a(n) = (n+1)*Fibonacci(n+2) + 3.

Original entry on oeis.org

4, 7, 12, 23, 43, 81, 150, 275, 498, 893, 1587, 2799, 4904, 8543, 14808, 25555, 43931, 75261, 128538, 218923, 371934, 630457, 1066467, 1800603, 3034828, 5106871, 8580900, 14398415, 24129163, 40388073, 67527582, 112786499, 188195274, 313733813, 522562323
Offset: 0

Views

Author

N. J. A. Sloane, Oct 04 2006

Keywords

Crossrefs

Cf. A023607.

Programs

  • Magma
    [(n+1)*Fibonacci(n+2) + 3: n in [0..40]]; // Vincenzo Librandi, Feb 25 2017
  • Mathematica
    Table[(n + 1) Fibonacci[n+2] + 3, {n, 0, 40}] (* Vincenzo Librandi, Feb 25 2017 *)
    LinearRecurrence[{3,-1,-3,1,1},{4,7,12,23,43},40] (* Harvey P. Dale, Jan 12 2018 *)
  • PARI
    a(n) = (n+1)*fibonacci(n+2) + 3; \\ Michel Marcus, Feb 25 2017
    
  • PARI
    Vec((4 - 5*x - 5*x^2 + 6*x^3 + 3*x^4)/((1 - x)*(1 - x - x^2)^2) + O(x^50)) \\ Colin Barker, Feb 25 2017
    

Formula

G.f.: (4 - 5*x - 5*x^2 + 6*x^3 + 3*x^4)/((1 - x)*(1 - x - x^2)^2). - Ilya Gutkovskiy, Feb 24 2017
From Colin Barker, Feb 25 2017: (Start)
a(n) = 3 - 2^(-1-n)*((1-sqrt(5))^n*(-5+3*sqrt(5)) - (1+sqrt(5))^n*(5+3*sqrt(5)))/5*(1+n).
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5) for n>4.
(End)