A123199 Irregular triangle read by rows: row n is the expansion of (1 + 2*x - x^2)^n.
1, 1, 2, -1, 1, 4, 2, -4, 1, 1, 6, 9, -4, -9, 6, -1, 1, 8, 20, 8, -26, -8, 20, -8, 1, 1, 10, 35, 40, -30, -68, 30, 40, -35, 10, -1, 1, 12, 54, 100, 15, -168, -76, 168, 15, -100, 54, -12, 1, 1, 14, 77, 196, 161, -238, -427, 184, 427, -238, -161, 196, -77, 14
Offset: 0
Examples
Triangle begins: 1; 1, 2, -1; 1, 4, 2, -4, 1; 1, 6, 9, -4, -9, 6, -1; 1, 8, 20, 8, -26, -8, 20, -8, 1; 1, 10, 35, 40, -30, -68, 30, 40, -35, 10, -1; ...
References
- Gengzhe Chang and Thomas W. Sederberg, Over and Over Again, The Mathematical Association of America, 1997, p. 164, figure 26.1.
- Henry McKean and Victor Moll, Elliptic Curves: Function Theory, Geometry, Arithmetic, Cambridge University Press, 1997, p. 106, figure 2.22.
Links
- G. C. Greubel, Rows n = 0..40 of the irregular triangle, flattened
Crossrefs
Programs
-
Mathematica
Table[CoefficientList[(-x^2 + 2*x + 1)^n, x], {n, 0, 10}]//Flatten
-
Maxima
create_list(ratcoef((-x^2 + 2*x + 1)^n, x, k), n, 0, 10, k, 0, 2*n); /* Franck Maminirina Ramaharo, Oct 13 2018 */
-
Sage
def T(n): return ( (1+2*x-x^2)^n ).full_simplify().coefficients(sparse=False) [T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
Formula
Row n is made of coefficients of: (1 + 2*x - x^2)^n. - Thomas Baruchel, Jan 15 2015
From Franck Maminirina Ramaharo, Oct 13 2018: (Start)
G.f.: 1/(1 - (1 + 2*x - x^2)*y).
E.g.f.: exp((1 + 2*x - x^2)*y).
T(n,1) = A005843(n).
T(n,2) = A014107(n).
T(n,n) = A098335(n). (End)
Extensions
New name from Thomas Baruchel, Jan 15 2015
Edited, and offset corrected by Franck Maminirina Ramaharo, Oct 13 2018
Comments