cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A122753 Triangle of coefficients of (1 - x)^n*B_n(x/(1 - x)), where B_n(x) is the n-th Bell polynomial.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, -1, 0, 1, 4, -5, 1, 0, 1, 11, -14, 1, 2, 0, 1, 26, -24, -29, 36, -9, 0, 1, 57, 1, -244, 281, -104, 9, 0, 1, 120, 225, -1259, 1401, -454, -83, 50, 0, 1, 247, 1268, -5081, 4621, 911, -3422, 1723, -267, 0, 1, 502, 5278, -16981, 5335, 30871
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 21 2006

Keywords

Comments

The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A048993(n,j)*x^j*(1 - x)^(n - j), where A048993 is the triangle of Stirling numbers of second kind.

Examples

			Triangle begins:
    1;
    0, 1;
    0, 1;
    0, 1,   1,   -1;
    0, 1,   4,   -5,     1;
    0, 1,  11,  -14,     1,    2;
    0, 1,  26,  -24,   -29,   36,   -9;
    0, 1,  57,    1,  -244,  281, -104,     9;
    0, 1, 120,  225, -1259, 1401, -454,   -83,   50;
    0, 1, 247, 1268, -5081, 4621,  911, -3422, 1723, -267;
    ... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 10 2018
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 824-825.

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Sum[StirlingS2[m, n]*x^n*(1-x)^(m-n), {n,0,m}], x], {m,0,10}]//Flatten
  • Maxima
    P(x, n) := expand(sum(stirling2(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
    T(n, k) := ratcoef(P(x, n), x, k)$
    tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
    
  • Sage
    def p(n,x): return sum( stirling_number2(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021

Formula

From Franck Maminirina Ramaharo, Oct 10 2018: (Start)
E.g.f.: exp((x/(1 - x))*(exp((1 - x)*y) - 1)).
T(n,1) = A000295(n-1). (End)

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 10 2018

A123018 Triangle read by rows: row n gives the coefficients of x^k (0 <= k <= n) in the expansion of Sum_{j=0..n} A320508(n,j)*x^j*(1 - x)^(n - j).

Original entry on oeis.org

1, 1, -2, 1, -2, 2, 1, -2, 1, -1, 1, -2, 0, 2, 0, 1, -2, -1, 5, -4, 0, 1, -2, -2, 8, -7, 2, 1, 1, -2, -3, 11, -9, 0, 3, -2, 1, -2, -4, 14, -10, -6, 12, -6, 2, 1, -2, -5, 17, -10, -16, 27, -15, 3, -1, 1, -2, -6, 20, -9, -30, 47, -24, 0, 4, 0, 1, -2, -7, 23, -7
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2006

Keywords

Comments

The n-th row consists of the coefficients in the expansion of (-x)^n - (1 - x)*(((1 - x - sqrt(1 + 2*x - 3*x^2))/2)^n - ((1 - x + sqrt(1 + 2*x - 3*x^2))/2)^n)/sqrt(1 + 2*x - 3*x^2). - Franck Maminirina Ramaharo, Oct 13 2018

Examples

			Triangle begins:
     1;
     1, -2;
     1, -2,  2;
     1, -2,  1, -1;
     1, -2,  0,  2,   0;
     1, -2, -1,  5,  -4,   0;
     1, -2, -2,  8,  -7,   2,  1;
     1, -2, -3, 11,  -9,   0,  3,  -2;
     1, -2, -4, 14, -10,  -6, 12,  -6,   2;
     1, -2, -5, 17, -10, -16, 27, -15,   3, -1;
     1, -2, -6, 20,  -9, -30, 47, -24,   0,  4,  0;
     1, -2, -7, 23,  -7, -48, 71, -28, -18, 22, -8, 0;
     ....
		

Crossrefs

Programs

  • Mathematica
    P[x_, n_]:= Sum[Binomial[n-k-1, k]*x^k*(1-x)^(n-k), {k, 0, n}];
    Table[Coefficient[P[x, n], x, k], {n,0,12}, {k,0,n}]//Flatten (* Franck Maminirina Ramaharo, Oct 14 2018 *)
  • Maxima
    P(x, n) := sum(binomial(n - k - 1, k)*x^k*(1 - x)^(n - k), k, 0, n)$
    create_list(ratcoef(expand(P(x, n)), x, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Oct 14 2018 */
    
  • Sage
    def p(n,x): return sum( binomial(n-j-1, j)*x^j*(1-x)^(n-j) for j in (0..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021

Formula

From Franck Maminirina Ramaharo, Oct 13 2018: (Start)
G.f.: 1/((1 + x*y)*(1 - y + x*y - x*y^2 + x^2*y^2)).
E.g.f.: exp(-x*y) - (exp(y*(1 - x - sqrt(1 + 2*x - 3*x^2))/2) - exp(y*(1 - x + sqrt(1 + 2*x - 3*x^2))/2))*(1 - x)/sqrt(1 + 2*x - 3*x^2). (End)

Extensions

Edited by N. J. A. Sloane, May 26 2007
Edited by Franck Maminirina Ramaharo, Oct 14 2018

A123027 Triangle of coefficients of (1 - x)^n*U(n,-(3*x - 2)/(2*x - 2)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, -2, 3, 3, -10, 8, -4, 22, -38, 21, 5, -40, 111, -130, 55, -6, 65, -256, 474, -420, 144, 7, -98, 511, -1324, 1836, -1308, 377, -8, 140, -924, 3130, -6020, 6666, -3970, 987, 9, -192, 1554, -6588, 16435, -25088, 23109, -11822, 2584, -10, 255, -2472, 12720, -39430, 77645, -98160, 77378, -34690, 6765
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2006

Keywords

Comments

The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A053122(n,j)*x^j*(1 - x)^(n - j).

Examples

			Triangle begins:
     1;
    -2,    3;
     3,  -10,    8;
    -4,   22,   38,    21;
     5,  -40,  111,  -130,    55;
    -6,   65, -256,   474,  -420,    144;
     7,  -98,  511, -1324,  1836,  -1308,   377;
    -8,  140, -924,  3130, -6020,   6666, -3970,    987;
     9, -192, 1554, -6588, 16435, -25088, 23109, -11822, 2584;
     ... reformatted and extended. _Franck Maminirina Ramaharo_, Oct 10 2018
		

Crossrefs

Programs

  • Mathematica
    b0 = Table[CoefficientList[ChebyshevU[n, x/2 -1], x], {n, 0, 10}];
    Table[CoefficientList[Sum[b0[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n,0,m}], x], {m,0,10}]//Flatten
    (* Alternative Adamson Matrix method *)
    t[n_, m_] = If[n==m, 2, If[n==m-1 || n==m+1, 1, 0]];
    M[d_] := Table[t[n, m], {n, d}, {m, d}];
    a = Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]];
    Table[CoefficientList[Sum[a[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n, 0, m}], x], {m, 0, 10}]//Flatten
  • Maxima
    A053122(n, k) := if n < k then 0 else ((-1)^(n - k))*binomial(n + k + 1,  2*k + 1)$
    P(x, n) := expand(sum(A053122(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
    T(n, k) := ratcoef(P(x, n), x, k)$
    tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
    
  • Sage
    def A053122(n, k): return 0 if (nA053122(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021

Formula

From Franck Maminirina Ramaharo, Oct 10 2018: (Start)
Row n = coefficients in the expansion of (1/sqrt((5*x - 4)*x))*(((3*x - 2 + sqrt((5*x - 4)*x))/2)^(n + 1) - ((3*x - 2 - sqrt((5*x - 4)*x))/2)^(n + 1)).
G.f.: 1/(1 + (2 - 3*x)*t + (1 - x)^2*t^2).
E.g.f.: exp(t*(3*x - 2)/2)*(sqrt((5*x - 4)*x)*cosh(t*sqrt((5*x - 4)*x)/2) + (3*x - 2)*sinh(t*sqrt((5*x - 4)*x)/2))/sqrt((5*x - 4)*x).
T(n,1) = (-1)^(n+1)*A006503(n).
T(n,n) = A001906(n+1). (End)

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 10 2018

A123019 Triangle of coefficients of (1 - x)^n*b(x/(1 - x),n), where b(x,n) is the Morgan-Voyce polynomial related to A085478.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 3, -4, 1, 1, 6, -9, 3, 1, 10, -15, 3, 3, -1, 1, 15, -20, -6, 18, -8, 1, 1, 21, -21, -35, 60, -30, 5, 1, 28, -14, -98, 145, -70, 5, 5, -1, 1, 36, 6, -210, 279, -100, -45, 45, -12, 1, 1, 45, 45, -384, 441, -21, -280, 210, -63, 7, 1, 55, 110
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2006

Keywords

Comments

The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A085478(n,j)*x^j*(1 - x)^(n - j).

Examples

			Triangle begins:
    1;
    1;
    1,  1,  -1;
    1,  3,  -4,    1;
    1,  6,  -9,    3;
    1, 10, -15,    3,   3,   -1;
    1, 15, -20,   -6,  18,   -8,    1;
    1, 21, -21,  -35,  60,  -30,    5;
    1, 28, -14,  -98, 145,  -70,    5,   5,   -1;
    1, 36,   6, -210, 279, -100,  -45,  45,  -12, 1;
    1, 45,  45, -384, 441,  -21, -280, 210,  -63, 7;
    1, 55, 110, -627, 561,  385, -973, 665, -189, 7, 7, -1;
    ... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 09 2018
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Sum[Binomial[n+k, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
  • Maxima
    A085478(n, k) := binomial(n + k, 2*k)$
    P(x, n) := expand(sum(A085478(n, j)*x^j*(1 - x)^(n - j),j,0,n))$
    T(n, k) := ratcoef(P(x, n), x, k)$
    tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x))); /* Franck Maminirina Ramaharo, Oct 09 2018 */
    
  • Sage
    def p(n,x): return sum( binomial(n+j, 2*j)*x^j*(1-x)^(n-j) for j in (0..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021

Formula

G.f.: (1 - (1 - x)*y)/(1 + (x - 2)*y + (x - 1)^2*y^2). - Vladeta Jovovic, Dec 14 2009
From Franck Maminirina Ramaharo, Oct 10 2018: (Start)
Row n = coefficients in the expansion of (1/(2*sqrt((4 - 3*x)*x)))*((sqrt((4 - 3*x)*x) + x)*((2 - x + sqrt((4 - 3*x)*x))/2)^n + (sqrt((4 - 3*x)*x) - x)*((2 - x - sqrt((4 - 3*x)*x))/2)^n).
E.g.f.: (1/(2*sqrt((4 - 3*x)*x)))*((sqrt((4 - 3*x)*x) + x)*exp(y*(2 - x + sqrt((4 - 3*x)*x))/2) + (sqrt((4 - 3*x)*x) - x)*exp(y*(2 - x - sqrt((4 - 3*x)*x))/2)).
T(n,1) = A000217(n-1). (End)

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 09 2018

A123021 Triangle of coefficients of (1 - x)^n*B(x/(1 - x),n), where B(x,n) is the Morgan-Voyce polynomial related to A078812.

Original entry on oeis.org

1, 2, -1, 3, -2, 4, -2, -2, 1, 5, 0, -9, 6, -1, 6, 5, -24, 18, -4, 7, 14, -49, 36, -4, -4, 1, 8, 28, -84, 50, 20, -30, 10, -1, 9, 48, -126, 36, 115, -120, 45, -6, 10, 75, -168, -48, 358, -335, 120, -6, -6, 1, 11, 110, -198, -264, 847, -714, 175, 84, -63, 14
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2006

Keywords

Comments

The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A078812(n,j)*x^j*(1 - x)^(n - j).

Examples

			Triangle begins:
    1;
    2,  -1;
    3,  -2;
    4,  -2,   -2,    1;
    5,   0,   -9,    6,  -1;
    6,   5,  -24,   18,  -4;
    7,  14,  -49,   36,  -4,   -4,   1;
    8,  28,  -84,   50,  20,  -30,  10, -1;
    9,  48, -126,   36, 115, -120,  45, -6;
   10,  75, -168,  -48, 358, -335, 120, -6,  -6,  1;
   11, 110, -198, -264, 847, -714, 175, 84, -63, 14, -1;
   ... - _Franck Maminirina Ramaharo_, Oct 09 2018
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Sum[Binomial[n+k+1, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
  • Maxima
    t(n, k) := binomial(n + k + 1, n - k)$
    P(x, n) := expand(sum(t(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
    T(n, k) := ratcoef(P(x, n), x, k)$
    tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 09 2018 */
    
  • Sage
    def p(n,x): return sum( binomial(n+j+1, n-j)*x^j*(1-x)^(n-j) for j in (0..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021

Formula

From Franck Maminirina Ramaharo, Oct 09 2018: (Start)
Row n = coefficients in the expansion of (1/sqrt((4 - 3*x)*x))*(((2 - x + sqrt((4 - 3*x)*x))/2)^(n + 1) - ((2 - x - sqrt((4 - 3*x)*x))/2)^(n + 1)).
G.f.: 1/(1 - (2 - x)*y + (1 - x)^2*y^2).
E.g.f.: (1/sqrt((4 - 3*x)*x))*((2 - x + sqrt((4 - 3*x)*x))*exp(y*(2 - x + sqrt((4 - 3*x)*x))/2)/2 - (2 - x - sqrt((4 - 3*x)*x))*exp(y*(2 - x - sqrt((4 - 3*x)*x))/2)/2).
T(n,1) = -A254749(n+1). (End)

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 09 2018

A123202 Triangle of coefficients of n!*(1 - x)^n*L_n(x/(1 - x)), where L_n(x) is the Laguerre polynomial.

Original entry on oeis.org

1, 1, -2, 2, -8, 7, 6, -36, 63, -34, 24, -192, 504, -544, 209, 120, -1200, 4200, -6800, 5225, -1546, 720, -8640, 37800, -81600, 94050, -55656, 13327, 5040, -70560, 370440, -999600, 1536150, -1363572, 653023, -130922, 40320, -645120, 3951360, -12794880
Offset: 0

Views

Author

Roger L. Bagula, Oct 04 2006

Keywords

Comments

The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A021009(n,j)*x^j*(1 - x)^(n - j).

Examples

			Triangle begins:
       1;
       1,    -2;
       2,    -8,     7;
       6,   -36,    63,    -34;
      24,  -192,   504,   -544,   209;
     120, -1200,  4200,  -6800,  5225,  -1546;
     720, -8640, 37800, -81600, 94050, -55656, 13327;
      ... reformatted. - _Franck Maminirina Ramaharo_, Oct 13 2018
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, 1972, p. 782.
  • Gengzhe Chang and Thomas W. Sederberg, Over and Over Again, The Mathematical Association of America, 1997, p. 164, figure 26.1.

Crossrefs

Programs

  • Maple
    M := (n,x) -> n!*subs(x=(x/(1-x)),orthopoly[L](n,x))*(1-x)^n:
    seq(print(seq(coeff(simplify(M(n,x)),x,k),k=0..n)),n=0..6); # Peter Luschny, Jan 05 2015
  • Mathematica
    w = Table[n!*CoefficientList[LaguerreL[n, x], x], {n, 0, 10}];
    v = Table[CoefficientList[Sum[w[[n + 1]][[m + 1]]*x^ m*(1 - x)^(n - m), {m, 0, n}], x], {n, 0, 10}]; Flatten[v]
  • Maxima
    create_list(ratcoef(n!*(1 - x)^n*laguerre(n, x/(1 - x)), x, k), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Oct 13 2018 */
    
  • PARI
    row(n) = Vecrev(n!*(1-x)^n*pollaguerre(n, 0, x/(1 - x))); \\ Michel Marcus, Feb 06 2021

Formula

T(n, k) = [x^k] (n!*L_n(x)*(1 - x)^n) with L_n(x) the Laguerre polynomial after substituting x by x/(1 - x). - Peter Luschny, Jan 05 2015
From Franck Maminirina Ramaharo, Oct 13 2018: (Start)
G.f.: exp(-x*y/(1 - (1 - x)*y))/(1 - (1 - x)*y).
T(n,1) = A000142(n).
T(n,2) = -A052582(n).
T(n,n) = A002720(n). (End)

Extensions

Edited by N. J. A. Sloane, Jun 12 2007
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 13 2018

A123217 Triangle read by rows: the n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A123162(n,j)*x^j*(1 - x)^(n - j).

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 2, 3, -5, 1, 3, 20, -32, 9, 1, 4, 58, -82, 5, 15, 1, 5, 125, -108, -161, 170, -31, 1, 6, 229, 17, -797, 603, 7, -65, 1, 7, 378, 532, -2210, 664, 1468, -968, 129, 1, 8, 580, 1820, -4226, -2846, 8788, -4388, 9, 255, 1, 9, 843, 4440, -5262
Offset: 0

Views

Author

Roger L. Bagula, Oct 04 2006

Keywords

Examples

			Triangle begins:
  1;
  1;
  1, 1,  -1;
  1, 2,   3,   -5;
  1, 3,  20,  -32,     9;
  1, 4,  58,  -82,     5,    15;
  1, 6, 229,   17,  -797,   603,    7,   -65;
  1, 7, 378,  532, -2210,   664, 1468,  -968, 129;
  1, 8, 580, 1820, -4226, -2846, 8788, -4388,   9, 255;
  ... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 10 2018
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_]= If[k==0, 1, Binomial[2*n-1, 2*k-1]];
    p[n_,x_]:= p[n,x]= Sum[t[n,j]*x^j*(1-x)^(n-j), {j,0,n}];
    Table[CoefficientList[p[n,x], x], {n, 0, 10}]//Flatten
  • Maxima
    A123162(n, k) := if n = 0 and k = 0 or k = 0 then 1 else binomial(2*n - 1, 2*k - 1)$
    P(x, n) := expand(sum(A123162(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
    T(n, k) := ratcoef(P(x, n), x, k)$
    tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
    
  • Sage
    def b(n,k): return 1 if (k==0) else binomial(2*n-1, 2*k-1)
    def p(n,x): return sum( b(n,j)*x^j*(1-x)^(n-j) for j in (0..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    [T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021

Formula

From Franck Maminirina Ramaharo, Oct 10 2018: (Start)
Row n = coefficients in the expansion of (1-x)^n + x*((1 - 2*sqrt((1-x)*x))^n*(1 - x + sqrt((1-x)*x)) - (1-x - sqrt((1-x)*x))*(1 + 2*sqrt((1-x)*x))^n)/(2*sqrt((1 - x)*x)*(2*x-1)).
G.f.: (1 - (2 - x)*y + (1 - 4*x + 3*x^2)*y^2 - (x - 3*x^2 + 2*x^3)*y^3)/(1 - (3 - x)*y + (3 - 6*x + 4*x^2)*y^2 - (1 - 5*x + 8*x^2 - 4*x^3)*y^3).
E.g.f.: exp((1 - x)*y) + x*((1 - x + sqrt((1 - x)*x))*exp((1 - 2*sqrt((1 - x)*x))*y) - (1 - x - sqrt((1 - x)*x))*exp((1 + 2*sqrt((1 - x)*x))*y))/(2*(2*x - 1)*sqrt((1 - x)*x)) - (1 - 3*x)/(1 - 2*x) + 1. (End)

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 11 2018

A123221 Irregular triangle read by rows: the n-th row consists of the coefficients in the expansion of Sum_{j=0..n*(n+1)/2} A008302(n+1,j)*x^j*(1 - x)^(n - min(n, j)), where A008302 is the triangle of Mahonian numbers.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 2, 3, 5, 3, 1, 1, 0, 3, 5, 11, 22, 20, 15, 9, 4, 1, 1, 0, 4, 7, 18, 41, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 0, 5, 9, 26, 64, 154, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 1, 0, 6, 11, 35, 91, 234, 583
Offset: 0

Views

Author

Roger L. Bagula, Oct 05 2006

Keywords

Examples

			Triangle begins:
    1;
    1;
    1, 0, 1, 1;
    1, 0, 2, 3,  5,  3,  1;
    1, 0, 3, 5, 11, 22, 20,  15,   9,  4,  1;
    1, 0, 4, 7, 18, 41, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1;
    ...
		

Crossrefs

Programs

  • Mathematica
    M[n_]:= CoefficientList[Product[1-x^j, {j, n}]/(1-x)^n, x];
    Table[CoefficientList[Sum[M[n+1][[m+1]]*x^m*(1-x)^(n -Min[n, m]), {m, 0, Binomial[n+1,2]}], x], {n, 0, 10}]//Flatten
  • Maxima
    A008302(n, k) := ratcoef(ratsimp(product((1 - x^j)/(1 - x), j, 1, n)), x, k)$
    P(x, n) := sum(A008302(n + 1, j)*x^j*(1 - x)^(n - min(n, j)), j, 0, n*(n + 1)/2)$
    create_list(ratcoef(expand(P(x, n)), x, k), n, 0, 10, k, 0, hipow(P(x, n), x)); /* Franck Maminirina Ramaharo, Oct 14 2018 */
    
  • Sage
    @CachedFunction
    def A008302(n,k):
        if (k<0 or k>binomial(n,2)): return 0
        elif (n==1 and k==0): return 1
        else: return A008302(n, k-1) + A008302(n-1, k) - A008302(n-1, k-n)
    def p(n,x): return sum( A008302(n+1, j)*x^j*(1-x)^(n-min(n, j)) for j in (0..binomial(n+1,2)) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 16 2021

Formula

T(n,k) = A008302(n+1,k) for n + 1 <= k <= n*(n + 1)/2, n > 1. - Franck Maminirina Ramaharo, Oct 14 2018

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 14 2018

A141720 Triangle of coefficients of the polynomials (1 - x)^n*A(n,x/(1 - x)), where A(n,x) are the Eulerian polynomials of A008292.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 2, -2, 0, 1, 8, -8, 0, 1, 22, -6, -32, 16, 0, 1, 52, 84, -272, 136, 0, 1, 114, 606, -1168, -96, 816, -272, 0, 1, 240, 2832, -2176, -8832, 11904, -3968, 0, 1, 494, 11122, 11072, -83360, 71168, 13312, -31744, 7936, 0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896
Offset: 1

Views

Author

Roger L. Bagula, Sep 11 2008

Keywords

Comments

Row sums are one.
Row n gives the coefficients in the expansion of Sum_{j=1..n} A008292(n,j)*x^j*(1 - x)^(n - j).
The coefficients of the polynomials (1 + x)^n*A(n,x/(1 + x)) are listed in A019538.

Examples

			Triangle begins:
  0, 1;
  0, 1;
  0, 1,    2,    -2;
  0, 1,    8,    -8;
  0, 1,   22,    -6,    -32,      16;
  0, 1,   52,    84,   -272,     136;
  0, 1,  114,   606,  -1168,     -96,    816,   -272;
  0, 1,  240,  2832,  -2176,   -8832,  11904,  -3968;
  0, 1,  494, 11122,  11072,  -83360,  71168,  13312,  -31744,   7936;
  0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896;
  ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    f:= func< n,x | n eq 0 select 1 else (&+[EulerianNumber(n,j-1)*x^j*(1-x)^(n-j): j in [1..n]]) >;
    A141720:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
    [A141720(n,k): k in [0..2*Floor((n+1)/2)-1], n in [1..15]]; // G. C. Greubel, Dec 30 2024
  • Maple
    CL := p -> PolynomialTools:-CoefficientList(p,x): flatten := seq -> ListTools:-Flatten(seq): flatten([seq(CL(add(A008292(n,j)*x^j*(1-x)^(n-j), j=1..n)), n=1..10)]); # Peter Luschny, Oct 25 2018
  • Mathematica
    Table[CoefficientList[FullSimplify[(1-2x)^(1+n)*PolyLog[-n, x/(1-x)]/(1-x)], x], {n, 1, 10}]//Flatten
  • Sage
    def A(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k))
    def p(n,x): return sum( A(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
    def A141720(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([A141720(n) for n in range(1,13)]) # G. C. Greubel, Jul 15 2021
    

Formula

Row n is generated by the polynomial (1 - 2*x)^(n+1)*Li(-n, x/(1-x))/(1 - x), where Li(n, z) is the polylogarithm function.
Also generated by Sum_{k=0..n} (eulerian(n,k)*Sum_{l=0..n} (-1)^l*(n - l + 1)*(2 - x)^l*C(l + 1, k)). - Mourad Rahmani (mrahmani(AT)usthb.dz), Jul 22 2010
E.g.f.: (x*exp(2*x*y) - x*exp(y))/(x*exp(y) - (1 - x)*exp(2*x*y)). - Franck Maminirina Ramaharo, Oct 24 2018

Extensions

Edited by Peter Bala, Jul 04 2012
Edited, and extra term removed by Franck Maminirina Ramaharo, Oct 24 2018

A144387 Triangle read by rows: row n gives the coefficients in the expansion of Sum_{j=0..n} A000040(j+1)*x^j*(1 - x)^(n - j).

Original entry on oeis.org

2, 2, 1, 2, -1, 4, 2, -3, 5, 3, 2, -5, 8, -2, 8, 2, -7, 13, -10, 10, 5, 2, -9, 20, -23, 20, -5, 12, 2, -11, 29, -43, 43, -25, 17, 7, 2, -13, 40, -72, 86, -68, 42, -10, 16, 2, -15, 53, -112, 158, -154, 110, -52, 26, 13, 2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 01 2008

Keywords

Comments

Row sums yield the primes A000040.

Examples

			Triangle begins
    2;
    2,   1;
    2,  -1,  4;
    2,  -3,  5,    3;
    2,  -5,  8,   -2,   8;
    2,  -7, 13,  -10,  10,    5;
    2,  -9, 20,  -23,  20,   -5,  12;
    2, -11, 29,  -43,  43,  -25,  17,    7;
    2, -13, 40,  -72,  86,  -68,  42,  -10, 16;
    2, -15, 53, -112, 158, -154, 110,  -52, 26,  13;
    2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18;
    ...
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = Sum[Prime[k + 1]*x^k*(1 - x)^(n - k), {k, 0, n}];
    Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
  • Sage
    def p(n,x): return sum( nth_prime(j+1)*x^j*(1-x)^(n-j) for j in (0..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    [T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 19 2018
Showing 1-10 of 12 results. Next