A122753
Triangle of coefficients of (1 - x)^n*B_n(x/(1 - x)), where B_n(x) is the n-th Bell polynomial.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 1, -1, 0, 1, 4, -5, 1, 0, 1, 11, -14, 1, 2, 0, 1, 26, -24, -29, 36, -9, 0, 1, 57, 1, -244, 281, -104, 9, 0, 1, 120, 225, -1259, 1401, -454, -83, 50, 0, 1, 247, 1268, -5081, 4621, 911, -3422, 1723, -267, 0, 1, 502, 5278, -16981, 5335, 30871
Offset: 0
Triangle begins:
1;
0, 1;
0, 1;
0, 1, 1, -1;
0, 1, 4, -5, 1;
0, 1, 11, -14, 1, 2;
0, 1, 26, -24, -29, 36, -9;
0, 1, 57, 1, -244, 281, -104, 9;
0, 1, 120, 225, -1259, 1401, -454, -83, 50;
0, 1, 247, 1268, -5081, 4621, 911, -3422, 1723, -267;
... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 10 2018
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 824-825.
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Bell Polynomial
- Eric Weisstein's World of Mathematics, Stirling Number of the Second Kind
-
Table[CoefficientList[Sum[StirlingS2[m, n]*x^n*(1-x)^(m-n), {n,0,m}], x], {m,0,10}]//Flatten
-
P(x, n) := expand(sum(stirling2(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
-
def p(n,x): return sum( stirling_number2(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123018
Triangle read by rows: row n gives the coefficients of x^k (0 <= k <= n) in the expansion of Sum_{j=0..n} A320508(n,j)*x^j*(1 - x)^(n - j).
Original entry on oeis.org
1, 1, -2, 1, -2, 2, 1, -2, 1, -1, 1, -2, 0, 2, 0, 1, -2, -1, 5, -4, 0, 1, -2, -2, 8, -7, 2, 1, 1, -2, -3, 11, -9, 0, 3, -2, 1, -2, -4, 14, -10, -6, 12, -6, 2, 1, -2, -5, 17, -10, -16, 27, -15, 3, -1, 1, -2, -6, 20, -9, -30, 47, -24, 0, 4, 0, 1, -2, -7, 23, -7
Offset: 0
Triangle begins:
1;
1, -2;
1, -2, 2;
1, -2, 1, -1;
1, -2, 0, 2, 0;
1, -2, -1, 5, -4, 0;
1, -2, -2, 8, -7, 2, 1;
1, -2, -3, 11, -9, 0, 3, -2;
1, -2, -4, 14, -10, -6, 12, -6, 2;
1, -2, -5, 17, -10, -16, 27, -15, 3, -1;
1, -2, -6, 20, -9, -30, 47, -24, 0, 4, 0;
1, -2, -7, 23, -7, -48, 71, -28, -18, 22, -8, 0;
....
-
P[x_, n_]:= Sum[Binomial[n-k-1, k]*x^k*(1-x)^(n-k), {k, 0, n}];
Table[Coefficient[P[x, n], x, k], {n,0,12}, {k,0,n}]//Flatten (* Franck Maminirina Ramaharo, Oct 14 2018 *)
-
P(x, n) := sum(binomial(n - k - 1, k)*x^k*(1 - x)^(n - k), k, 0, n)$
create_list(ratcoef(expand(P(x, n)), x, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Oct 14 2018 */
-
def p(n,x): return sum( binomial(n-j-1, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123027
Triangle of coefficients of (1 - x)^n*U(n,-(3*x - 2)/(2*x - 2)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
Original entry on oeis.org
1, -2, 3, 3, -10, 8, -4, 22, -38, 21, 5, -40, 111, -130, 55, -6, 65, -256, 474, -420, 144, 7, -98, 511, -1324, 1836, -1308, 377, -8, 140, -924, 3130, -6020, 6666, -3970, 987, 9, -192, 1554, -6588, 16435, -25088, 23109, -11822, 2584, -10, 255, -2472, 12720, -39430, 77645, -98160, 77378, -34690, 6765
Offset: 0
Triangle begins:
1;
-2, 3;
3, -10, 8;
-4, 22, 38, 21;
5, -40, 111, -130, 55;
-6, 65, -256, 474, -420, 144;
7, -98, 511, -1324, 1836, -1308, 377;
-8, 140, -924, 3130, -6020, 6666, -3970, 987;
9, -192, 1554, -6588, 16435, -25088, 23109, -11822, 2584;
... reformatted and extended. _Franck Maminirina Ramaharo_, Oct 10 2018
-
b0 = Table[CoefficientList[ChebyshevU[n, x/2 -1], x], {n, 0, 10}];
Table[CoefficientList[Sum[b0[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n,0,m}], x], {m,0,10}]//Flatten
(* Alternative Adamson Matrix method *)
t[n_, m_] = If[n==m, 2, If[n==m-1 || n==m+1, 1, 0]];
M[d_] := Table[t[n, m], {n, d}, {m, d}];
a = Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]];
Table[CoefficientList[Sum[a[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n, 0, m}], x], {m, 0, 10}]//Flatten
-
A053122(n, k) := if n < k then 0 else ((-1)^(n - k))*binomial(n + k + 1, 2*k + 1)$
P(x, n) := expand(sum(A053122(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
-
def A053122(n, k): return 0 if (nA053122(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123019
Triangle of coefficients of (1 - x)^n*b(x/(1 - x),n), where b(x,n) is the Morgan-Voyce polynomial related to A085478.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 3, -4, 1, 1, 6, -9, 3, 1, 10, -15, 3, 3, -1, 1, 15, -20, -6, 18, -8, 1, 1, 21, -21, -35, 60, -30, 5, 1, 28, -14, -98, 145, -70, 5, 5, -1, 1, 36, 6, -210, 279, -100, -45, 45, -12, 1, 1, 45, 45, -384, 441, -21, -280, 210, -63, 7, 1, 55, 110
Offset: 0
Triangle begins:
1;
1;
1, 1, -1;
1, 3, -4, 1;
1, 6, -9, 3;
1, 10, -15, 3, 3, -1;
1, 15, -20, -6, 18, -8, 1;
1, 21, -21, -35, 60, -30, 5;
1, 28, -14, -98, 145, -70, 5, 5, -1;
1, 36, 6, -210, 279, -100, -45, 45, -12, 1;
1, 45, 45, -384, 441, -21, -280, 210, -63, 7;
1, 55, 110, -627, 561, 385, -973, 665, -189, 7, 7, -1;
... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 09 2018
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
- Thomas Koshy, Morgan-Voyce Polynomials, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, pp. 480-495.
- M. N. S. Swamy, Rising Diagonal Polynomials Associated with Morgan-Voyce Polynomials, The Fibonacci Quarterly Vol. 38 (2000), 61-70.
- Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
-
Table[CoefficientList[Sum[Binomial[n+k, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
-
A085478(n, k) := binomial(n + k, 2*k)$
P(x, n) := expand(sum(A085478(n, j)*x^j*(1 - x)^(n - j),j,0,n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x))); /* Franck Maminirina Ramaharo, Oct 09 2018 */
-
def p(n,x): return sum( binomial(n+j, 2*j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123021
Triangle of coefficients of (1 - x)^n*B(x/(1 - x),n), where B(x,n) is the Morgan-Voyce polynomial related to A078812.
Original entry on oeis.org
1, 2, -1, 3, -2, 4, -2, -2, 1, 5, 0, -9, 6, -1, 6, 5, -24, 18, -4, 7, 14, -49, 36, -4, -4, 1, 8, 28, -84, 50, 20, -30, 10, -1, 9, 48, -126, 36, 115, -120, 45, -6, 10, 75, -168, -48, 358, -335, 120, -6, -6, 1, 11, 110, -198, -264, 847, -714, 175, 84, -63, 14
Offset: 0
Triangle begins:
1;
2, -1;
3, -2;
4, -2, -2, 1;
5, 0, -9, 6, -1;
6, 5, -24, 18, -4;
7, 14, -49, 36, -4, -4, 1;
8, 28, -84, 50, 20, -30, 10, -1;
9, 48, -126, 36, 115, -120, 45, -6;
10, 75, -168, -48, 358, -335, 120, -6, -6, 1;
11, 110, -198, -264, 847, -714, 175, 84, -63, 14, -1;
... - _Franck Maminirina Ramaharo_, Oct 09 2018
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
- Thomas Koshy, Morgan-Voyce Polynomials, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, pp. 480-495.
- M. N. S. Swamy, Rising Diagonal Polynomials Associated with Morgan-Voyce Polynomials, The Fibonacci Quarterly Vol. 38 (2000), 61-70.
- Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
-
Table[CoefficientList[Sum[Binomial[n+k+1, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
-
t(n, k) := binomial(n + k + 1, n - k)$
P(x, n) := expand(sum(t(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 09 2018 */
-
def p(n,x): return sum( binomial(n+j+1, n-j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123202
Triangle of coefficients of n!*(1 - x)^n*L_n(x/(1 - x)), where L_n(x) is the Laguerre polynomial.
Original entry on oeis.org
1, 1, -2, 2, -8, 7, 6, -36, 63, -34, 24, -192, 504, -544, 209, 120, -1200, 4200, -6800, 5225, -1546, 720, -8640, 37800, -81600, 94050, -55656, 13327, 5040, -70560, 370440, -999600, 1536150, -1363572, 653023, -130922, 40320, -645120, 3951360, -12794880
Offset: 0
Triangle begins:
1;
1, -2;
2, -8, 7;
6, -36, 63, -34;
24, -192, 504, -544, 209;
120, -1200, 4200, -6800, 5225, -1546;
720, -8640, 37800, -81600, 94050, -55656, 13327;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 13 2018
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, 1972, p. 782.
- Gengzhe Chang and Thomas W. Sederberg, Over and Over Again, The Mathematical Association of America, 1997, p. 164, figure 26.1.
- G. C. Greubel, Table of n, a(n) for n = 0..5150 (Rows n=0..100 of triangle, flattened; offset corrected by _Georg Fischer_, Jan 31 2019)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eric Weisstein's World of Mathematics, Laguerre Polynomial
-
M := (n,x) -> n!*subs(x=(x/(1-x)),orthopoly[L](n,x))*(1-x)^n:
seq(print(seq(coeff(simplify(M(n,x)),x,k),k=0..n)),n=0..6); # Peter Luschny, Jan 05 2015
-
w = Table[n!*CoefficientList[LaguerreL[n, x], x], {n, 0, 10}];
v = Table[CoefficientList[Sum[w[[n + 1]][[m + 1]]*x^ m*(1 - x)^(n - m), {m, 0, n}], x], {n, 0, 10}]; Flatten[v]
-
create_list(ratcoef(n!*(1 - x)^n*laguerre(n, x/(1 - x)), x, k), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Oct 13 2018 */
-
row(n) = Vecrev(n!*(1-x)^n*pollaguerre(n, 0, x/(1 - x))); \\ Michel Marcus, Feb 06 2021
A123217
Triangle read by rows: the n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A123162(n,j)*x^j*(1 - x)^(n - j).
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 2, 3, -5, 1, 3, 20, -32, 9, 1, 4, 58, -82, 5, 15, 1, 5, 125, -108, -161, 170, -31, 1, 6, 229, 17, -797, 603, 7, -65, 1, 7, 378, 532, -2210, 664, 1468, -968, 129, 1, 8, 580, 1820, -4226, -2846, 8788, -4388, 9, 255, 1, 9, 843, 4440, -5262
Offset: 0
Triangle begins:
1;
1;
1, 1, -1;
1, 2, 3, -5;
1, 3, 20, -32, 9;
1, 4, 58, -82, 5, 15;
1, 6, 229, 17, -797, 603, 7, -65;
1, 7, 378, 532, -2210, 664, 1468, -968, 129;
1, 8, 580, 1820, -4226, -2846, 8788, -4388, 9, 255;
... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 10 2018
-
t[n_, k_]= If[k==0, 1, Binomial[2*n-1, 2*k-1]];
p[n_,x_]:= p[n,x]= Sum[t[n,j]*x^j*(1-x)^(n-j), {j,0,n}];
Table[CoefficientList[p[n,x], x], {n, 0, 10}]//Flatten
-
A123162(n, k) := if n = 0 and k = 0 or k = 0 then 1 else binomial(2*n - 1, 2*k - 1)$
P(x, n) := expand(sum(A123162(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
-
def b(n,k): return 1 if (k==0) else binomial(2*n-1, 2*k-1)
def p(n,x): return sum( b(n,j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
A123221
Irregular triangle read by rows: the n-th row consists of the coefficients in the expansion of Sum_{j=0..n*(n+1)/2} A008302(n+1,j)*x^j*(1 - x)^(n - min(n, j)), where A008302 is the triangle of Mahonian numbers.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 1, 0, 2, 3, 5, 3, 1, 1, 0, 3, 5, 11, 22, 20, 15, 9, 4, 1, 1, 0, 4, 7, 18, 41, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 0, 5, 9, 26, 64, 154, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 1, 0, 6, 11, 35, 91, 234, 583
Offset: 0
Triangle begins:
1;
1;
1, 0, 1, 1;
1, 0, 2, 3, 5, 3, 1;
1, 0, 3, 5, 11, 22, 20, 15, 9, 4, 1;
1, 0, 4, 7, 18, 41, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1;
...
-
M[n_]:= CoefficientList[Product[1-x^j, {j, n}]/(1-x)^n, x];
Table[CoefficientList[Sum[M[n+1][[m+1]]*x^m*(1-x)^(n -Min[n, m]), {m, 0, Binomial[n+1,2]}], x], {n, 0, 10}]//Flatten
-
A008302(n, k) := ratcoef(ratsimp(product((1 - x^j)/(1 - x), j, 1, n)), x, k)$
P(x, n) := sum(A008302(n + 1, j)*x^j*(1 - x)^(n - min(n, j)), j, 0, n*(n + 1)/2)$
create_list(ratcoef(expand(P(x, n)), x, k), n, 0, 10, k, 0, hipow(P(x, n), x)); /* Franck Maminirina Ramaharo, Oct 14 2018 */
-
@CachedFunction
def A008302(n,k):
if (k<0 or k>binomial(n,2)): return 0
elif (n==1 and k==0): return 1
else: return A008302(n, k-1) + A008302(n-1, k) - A008302(n-1, k-n)
def p(n,x): return sum( A008302(n+1, j)*x^j*(1-x)^(n-min(n, j)) for j in (0..binomial(n+1,2)) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 16 2021
A141720
Triangle of coefficients of the polynomials (1 - x)^n*A(n,x/(1 - x)), where A(n,x) are the Eulerian polynomials of A008292.
Original entry on oeis.org
0, 1, 0, 1, 0, 1, 2, -2, 0, 1, 8, -8, 0, 1, 22, -6, -32, 16, 0, 1, 52, 84, -272, 136, 0, 1, 114, 606, -1168, -96, 816, -272, 0, 1, 240, 2832, -2176, -8832, 11904, -3968, 0, 1, 494, 11122, 11072, -83360, 71168, 13312, -31744, 7936, 0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896
Offset: 1
Triangle begins:
0, 1;
0, 1;
0, 1, 2, -2;
0, 1, 8, -8;
0, 1, 22, -6, -32, 16;
0, 1, 52, 84, -272, 136;
0, 1, 114, 606, -1168, -96, 816, -272;
0, 1, 240, 2832, -2176, -8832, 11904, -3968;
0, 1, 494, 11122, 11072, -83360, 71168, 13312, -31744, 7936;
0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896;
...
Cf.
A008292,
A019538,
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A144387,
A144400,
A174128.
-
R:=PowerSeriesRing(Rationals(), 30);
f:= func< n,x | n eq 0 select 1 else (&+[EulerianNumber(n,j-1)*x^j*(1-x)^(n-j): j in [1..n]]) >;
A141720:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
[A141720(n,k): k in [0..2*Floor((n+1)/2)-1], n in [1..15]]; // G. C. Greubel, Dec 30 2024
-
CL := p -> PolynomialTools:-CoefficientList(p,x): flatten := seq -> ListTools:-Flatten(seq): flatten([seq(CL(add(A008292(n,j)*x^j*(1-x)^(n-j), j=1..n)), n=1..10)]); # Peter Luschny, Oct 25 2018
-
Table[CoefficientList[FullSimplify[(1-2x)^(1+n)*PolyLog[-n, x/(1-x)]/(1-x)], x], {n, 1, 10}]//Flatten
-
def A(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k))
def p(n,x): return sum( A(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def A141720(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([A141720(n) for n in range(1,13)]) # G. C. Greubel, Jul 15 2021
A144387
Triangle read by rows: row n gives the coefficients in the expansion of Sum_{j=0..n} A000040(j+1)*x^j*(1 - x)^(n - j).
Original entry on oeis.org
2, 2, 1, 2, -1, 4, 2, -3, 5, 3, 2, -5, 8, -2, 8, 2, -7, 13, -10, 10, 5, 2, -9, 20, -23, 20, -5, 12, 2, -11, 29, -43, 43, -25, 17, 7, 2, -13, 40, -72, 86, -68, 42, -10, 16, 2, -15, 53, -112, 158, -154, 110, -52, 26, 13, 2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18
Offset: 0
Triangle begins
2;
2, 1;
2, -1, 4;
2, -3, 5, 3;
2, -5, 8, -2, 8;
2, -7, 13, -10, 10, 5;
2, -9, 20, -23, 20, -5, 12;
2, -11, 29, -43, 43, -25, 17, 7;
2, -13, 40, -72, 86, -68, 42, -10, 16;
2, -15, 53, -112, 158, -154, 110, -52, 26, 13;
2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18;
...
Cf.
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A141720,
A144400,
A174128.
-
p[x_, n_] = Sum[Prime[k + 1]*x^k*(1 - x)^(n - k), {k, 0, n}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
-
def p(n,x): return sum( nth_prime(j+1)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
Showing 1-10 of 12 results.
Comments