A122753
Triangle of coefficients of (1 - x)^n*B_n(x/(1 - x)), where B_n(x) is the n-th Bell polynomial.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 1, -1, 0, 1, 4, -5, 1, 0, 1, 11, -14, 1, 2, 0, 1, 26, -24, -29, 36, -9, 0, 1, 57, 1, -244, 281, -104, 9, 0, 1, 120, 225, -1259, 1401, -454, -83, 50, 0, 1, 247, 1268, -5081, 4621, 911, -3422, 1723, -267, 0, 1, 502, 5278, -16981, 5335, 30871
Offset: 0
Triangle begins:
1;
0, 1;
0, 1;
0, 1, 1, -1;
0, 1, 4, -5, 1;
0, 1, 11, -14, 1, 2;
0, 1, 26, -24, -29, 36, -9;
0, 1, 57, 1, -244, 281, -104, 9;
0, 1, 120, 225, -1259, 1401, -454, -83, 50;
0, 1, 247, 1268, -5081, 4621, 911, -3422, 1723, -267;
... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 10 2018
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 824-825.
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Bell Polynomial
- Eric Weisstein's World of Mathematics, Stirling Number of the Second Kind
-
Table[CoefficientList[Sum[StirlingS2[m, n]*x^n*(1-x)^(m-n), {n,0,m}], x], {m,0,10}]//Flatten
-
P(x, n) := expand(sum(stirling2(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
-
def p(n,x): return sum( stirling_number2(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123018
Triangle read by rows: row n gives the coefficients of x^k (0 <= k <= n) in the expansion of Sum_{j=0..n} A320508(n,j)*x^j*(1 - x)^(n - j).
Original entry on oeis.org
1, 1, -2, 1, -2, 2, 1, -2, 1, -1, 1, -2, 0, 2, 0, 1, -2, -1, 5, -4, 0, 1, -2, -2, 8, -7, 2, 1, 1, -2, -3, 11, -9, 0, 3, -2, 1, -2, -4, 14, -10, -6, 12, -6, 2, 1, -2, -5, 17, -10, -16, 27, -15, 3, -1, 1, -2, -6, 20, -9, -30, 47, -24, 0, 4, 0, 1, -2, -7, 23, -7
Offset: 0
Triangle begins:
1;
1, -2;
1, -2, 2;
1, -2, 1, -1;
1, -2, 0, 2, 0;
1, -2, -1, 5, -4, 0;
1, -2, -2, 8, -7, 2, 1;
1, -2, -3, 11, -9, 0, 3, -2;
1, -2, -4, 14, -10, -6, 12, -6, 2;
1, -2, -5, 17, -10, -16, 27, -15, 3, -1;
1, -2, -6, 20, -9, -30, 47, -24, 0, 4, 0;
1, -2, -7, 23, -7, -48, 71, -28, -18, 22, -8, 0;
....
-
P[x_, n_]:= Sum[Binomial[n-k-1, k]*x^k*(1-x)^(n-k), {k, 0, n}];
Table[Coefficient[P[x, n], x, k], {n,0,12}, {k,0,n}]//Flatten (* Franck Maminirina Ramaharo, Oct 14 2018 *)
-
P(x, n) := sum(binomial(n - k - 1, k)*x^k*(1 - x)^(n - k), k, 0, n)$
create_list(ratcoef(expand(P(x, n)), x, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Oct 14 2018 */
-
def p(n,x): return sum( binomial(n-j-1, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123027
Triangle of coefficients of (1 - x)^n*U(n,-(3*x - 2)/(2*x - 2)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
Original entry on oeis.org
1, -2, 3, 3, -10, 8, -4, 22, -38, 21, 5, -40, 111, -130, 55, -6, 65, -256, 474, -420, 144, 7, -98, 511, -1324, 1836, -1308, 377, -8, 140, -924, 3130, -6020, 6666, -3970, 987, 9, -192, 1554, -6588, 16435, -25088, 23109, -11822, 2584, -10, 255, -2472, 12720, -39430, 77645, -98160, 77378, -34690, 6765
Offset: 0
Triangle begins:
1;
-2, 3;
3, -10, 8;
-4, 22, 38, 21;
5, -40, 111, -130, 55;
-6, 65, -256, 474, -420, 144;
7, -98, 511, -1324, 1836, -1308, 377;
-8, 140, -924, 3130, -6020, 6666, -3970, 987;
9, -192, 1554, -6588, 16435, -25088, 23109, -11822, 2584;
... reformatted and extended. _Franck Maminirina Ramaharo_, Oct 10 2018
-
b0 = Table[CoefficientList[ChebyshevU[n, x/2 -1], x], {n, 0, 10}];
Table[CoefficientList[Sum[b0[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n,0,m}], x], {m,0,10}]//Flatten
(* Alternative Adamson Matrix method *)
t[n_, m_] = If[n==m, 2, If[n==m-1 || n==m+1, 1, 0]];
M[d_] := Table[t[n, m], {n, d}, {m, d}];
a = Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]];
Table[CoefficientList[Sum[a[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n, 0, m}], x], {m, 0, 10}]//Flatten
-
A053122(n, k) := if n < k then 0 else ((-1)^(n - k))*binomial(n + k + 1, 2*k + 1)$
P(x, n) := expand(sum(A053122(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
-
def A053122(n, k): return 0 if (nA053122(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123019
Triangle of coefficients of (1 - x)^n*b(x/(1 - x),n), where b(x,n) is the Morgan-Voyce polynomial related to A085478.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 3, -4, 1, 1, 6, -9, 3, 1, 10, -15, 3, 3, -1, 1, 15, -20, -6, 18, -8, 1, 1, 21, -21, -35, 60, -30, 5, 1, 28, -14, -98, 145, -70, 5, 5, -1, 1, 36, 6, -210, 279, -100, -45, 45, -12, 1, 1, 45, 45, -384, 441, -21, -280, 210, -63, 7, 1, 55, 110
Offset: 0
Triangle begins:
1;
1;
1, 1, -1;
1, 3, -4, 1;
1, 6, -9, 3;
1, 10, -15, 3, 3, -1;
1, 15, -20, -6, 18, -8, 1;
1, 21, -21, -35, 60, -30, 5;
1, 28, -14, -98, 145, -70, 5, 5, -1;
1, 36, 6, -210, 279, -100, -45, 45, -12, 1;
1, 45, 45, -384, 441, -21, -280, 210, -63, 7;
1, 55, 110, -627, 561, 385, -973, 665, -189, 7, 7, -1;
... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 09 2018
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
- Thomas Koshy, Morgan-Voyce Polynomials, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, pp. 480-495.
- M. N. S. Swamy, Rising Diagonal Polynomials Associated with Morgan-Voyce Polynomials, The Fibonacci Quarterly Vol. 38 (2000), 61-70.
- Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
-
Table[CoefficientList[Sum[Binomial[n+k, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
-
A085478(n, k) := binomial(n + k, 2*k)$
P(x, n) := expand(sum(A085478(n, j)*x^j*(1 - x)^(n - j),j,0,n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x))); /* Franck Maminirina Ramaharo, Oct 09 2018 */
-
def p(n,x): return sum( binomial(n+j, 2*j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123021
Triangle of coefficients of (1 - x)^n*B(x/(1 - x),n), where B(x,n) is the Morgan-Voyce polynomial related to A078812.
Original entry on oeis.org
1, 2, -1, 3, -2, 4, -2, -2, 1, 5, 0, -9, 6, -1, 6, 5, -24, 18, -4, 7, 14, -49, 36, -4, -4, 1, 8, 28, -84, 50, 20, -30, 10, -1, 9, 48, -126, 36, 115, -120, 45, -6, 10, 75, -168, -48, 358, -335, 120, -6, -6, 1, 11, 110, -198, -264, 847, -714, 175, 84, -63, 14
Offset: 0
Triangle begins:
1;
2, -1;
3, -2;
4, -2, -2, 1;
5, 0, -9, 6, -1;
6, 5, -24, 18, -4;
7, 14, -49, 36, -4, -4, 1;
8, 28, -84, 50, 20, -30, 10, -1;
9, 48, -126, 36, 115, -120, 45, -6;
10, 75, -168, -48, 358, -335, 120, -6, -6, 1;
11, 110, -198, -264, 847, -714, 175, 84, -63, 14, -1;
... - _Franck Maminirina Ramaharo_, Oct 09 2018
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
- Thomas Koshy, Morgan-Voyce Polynomials, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, pp. 480-495.
- M. N. S. Swamy, Rising Diagonal Polynomials Associated with Morgan-Voyce Polynomials, The Fibonacci Quarterly Vol. 38 (2000), 61-70.
- Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
-
Table[CoefficientList[Sum[Binomial[n+k+1, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
-
t(n, k) := binomial(n + k + 1, n - k)$
P(x, n) := expand(sum(t(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 09 2018 */
-
def p(n,x): return sum( binomial(n+j+1, n-j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
A123199
Irregular triangle read by rows: row n is the expansion of (1 + 2*x - x^2)^n.
Original entry on oeis.org
1, 1, 2, -1, 1, 4, 2, -4, 1, 1, 6, 9, -4, -9, 6, -1, 1, 8, 20, 8, -26, -8, 20, -8, 1, 1, 10, 35, 40, -30, -68, 30, 40, -35, 10, -1, 1, 12, 54, 100, 15, -168, -76, 168, 15, -100, 54, -12, 1, 1, 14, 77, 196, 161, -238, -427, 184, 427, -238, -161, 196, -77, 14
Offset: 0
Triangle begins:
1;
1, 2, -1;
1, 4, 2, -4, 1;
1, 6, 9, -4, -9, 6, -1;
1, 8, 20, 8, -26, -8, 20, -8, 1;
1, 10, 35, 40, -30, -68, 30, 40, -35, 10, -1;
...
- Gengzhe Chang and Thomas W. Sederberg, Over and Over Again, The Mathematical Association of America, 1997, p. 164, figure 26.1.
- Henry McKean and Victor Moll, Elliptic Curves: Function Theory, Geometry, Arithmetic, Cambridge University Press, 1997, p. 106, figure 2.22.
-
Table[CoefficientList[(-x^2 + 2*x + 1)^n, x], {n, 0, 10}]//Flatten
-
create_list(ratcoef((-x^2 + 2*x + 1)^n, x, k), n, 0, 10, k, 0, 2*n); /* Franck Maminirina Ramaharo, Oct 13 2018 */
-
def T(n): return ( (1+2*x-x^2)^n ).full_simplify().coefficients(sparse=False)
[T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
A123202
Triangle of coefficients of n!*(1 - x)^n*L_n(x/(1 - x)), where L_n(x) is the Laguerre polynomial.
Original entry on oeis.org
1, 1, -2, 2, -8, 7, 6, -36, 63, -34, 24, -192, 504, -544, 209, 120, -1200, 4200, -6800, 5225, -1546, 720, -8640, 37800, -81600, 94050, -55656, 13327, 5040, -70560, 370440, -999600, 1536150, -1363572, 653023, -130922, 40320, -645120, 3951360, -12794880
Offset: 0
Triangle begins:
1;
1, -2;
2, -8, 7;
6, -36, 63, -34;
24, -192, 504, -544, 209;
120, -1200, 4200, -6800, 5225, -1546;
720, -8640, 37800, -81600, 94050, -55656, 13327;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 13 2018
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, 1972, p. 782.
- Gengzhe Chang and Thomas W. Sederberg, Over and Over Again, The Mathematical Association of America, 1997, p. 164, figure 26.1.
- G. C. Greubel, Table of n, a(n) for n = 0..5150 (Rows n=0..100 of triangle, flattened; offset corrected by _Georg Fischer_, Jan 31 2019)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eric Weisstein's World of Mathematics, Laguerre Polynomial
-
M := (n,x) -> n!*subs(x=(x/(1-x)),orthopoly[L](n,x))*(1-x)^n:
seq(print(seq(coeff(simplify(M(n,x)),x,k),k=0..n)),n=0..6); # Peter Luschny, Jan 05 2015
-
w = Table[n!*CoefficientList[LaguerreL[n, x], x], {n, 0, 10}];
v = Table[CoefficientList[Sum[w[[n + 1]][[m + 1]]*x^ m*(1 - x)^(n - m), {m, 0, n}], x], {n, 0, 10}]; Flatten[v]
-
create_list(ratcoef(n!*(1 - x)^n*laguerre(n, x/(1 - x)), x, k), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Oct 13 2018 */
-
row(n) = Vecrev(n!*(1-x)^n*pollaguerre(n, 0, x/(1 - x))); \\ Michel Marcus, Feb 06 2021
A123217
Triangle read by rows: the n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A123162(n,j)*x^j*(1 - x)^(n - j).
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 2, 3, -5, 1, 3, 20, -32, 9, 1, 4, 58, -82, 5, 15, 1, 5, 125, -108, -161, 170, -31, 1, 6, 229, 17, -797, 603, 7, -65, 1, 7, 378, 532, -2210, 664, 1468, -968, 129, 1, 8, 580, 1820, -4226, -2846, 8788, -4388, 9, 255, 1, 9, 843, 4440, -5262
Offset: 0
Triangle begins:
1;
1;
1, 1, -1;
1, 2, 3, -5;
1, 3, 20, -32, 9;
1, 4, 58, -82, 5, 15;
1, 6, 229, 17, -797, 603, 7, -65;
1, 7, 378, 532, -2210, 664, 1468, -968, 129;
1, 8, 580, 1820, -4226, -2846, 8788, -4388, 9, 255;
... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 10 2018
-
t[n_, k_]= If[k==0, 1, Binomial[2*n-1, 2*k-1]];
p[n_,x_]:= p[n,x]= Sum[t[n,j]*x^j*(1-x)^(n-j), {j,0,n}];
Table[CoefficientList[p[n,x], x], {n, 0, 10}]//Flatten
-
A123162(n, k) := if n = 0 and k = 0 or k = 0 then 1 else binomial(2*n - 1, 2*k - 1)$
P(x, n) := expand(sum(A123162(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
-
def b(n,k): return 1 if (k==0) else binomial(2*n-1, 2*k-1)
def p(n,x): return sum( b(n,j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
A141720
Triangle of coefficients of the polynomials (1 - x)^n*A(n,x/(1 - x)), where A(n,x) are the Eulerian polynomials of A008292.
Original entry on oeis.org
0, 1, 0, 1, 0, 1, 2, -2, 0, 1, 8, -8, 0, 1, 22, -6, -32, 16, 0, 1, 52, 84, -272, 136, 0, 1, 114, 606, -1168, -96, 816, -272, 0, 1, 240, 2832, -2176, -8832, 11904, -3968, 0, 1, 494, 11122, 11072, -83360, 71168, 13312, -31744, 7936, 0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896
Offset: 1
Triangle begins:
0, 1;
0, 1;
0, 1, 2, -2;
0, 1, 8, -8;
0, 1, 22, -6, -32, 16;
0, 1, 52, 84, -272, 136;
0, 1, 114, 606, -1168, -96, 816, -272;
0, 1, 240, 2832, -2176, -8832, 11904, -3968;
0, 1, 494, 11122, 11072, -83360, 71168, 13312, -31744, 7936;
0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896;
...
Cf.
A008292,
A019538,
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A144387,
A144400,
A174128.
-
R:=PowerSeriesRing(Rationals(), 30);
f:= func< n,x | n eq 0 select 1 else (&+[EulerianNumber(n,j-1)*x^j*(1-x)^(n-j): j in [1..n]]) >;
A141720:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
[A141720(n,k): k in [0..2*Floor((n+1)/2)-1], n in [1..15]]; // G. C. Greubel, Dec 30 2024
-
CL := p -> PolynomialTools:-CoefficientList(p,x): flatten := seq -> ListTools:-Flatten(seq): flatten([seq(CL(add(A008292(n,j)*x^j*(1-x)^(n-j), j=1..n)), n=1..10)]); # Peter Luschny, Oct 25 2018
-
Table[CoefficientList[FullSimplify[(1-2x)^(1+n)*PolyLog[-n, x/(1-x)]/(1-x)], x], {n, 1, 10}]//Flatten
-
def A(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k))
def p(n,x): return sum( A(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def A141720(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([A141720(n) for n in range(1,13)]) # G. C. Greubel, Jul 15 2021
A144387
Triangle read by rows: row n gives the coefficients in the expansion of Sum_{j=0..n} A000040(j+1)*x^j*(1 - x)^(n - j).
Original entry on oeis.org
2, 2, 1, 2, -1, 4, 2, -3, 5, 3, 2, -5, 8, -2, 8, 2, -7, 13, -10, 10, 5, 2, -9, 20, -23, 20, -5, 12, 2, -11, 29, -43, 43, -25, 17, 7, 2, -13, 40, -72, 86, -68, 42, -10, 16, 2, -15, 53, -112, 158, -154, 110, -52, 26, 13, 2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18
Offset: 0
Triangle begins
2;
2, 1;
2, -1, 4;
2, -3, 5, 3;
2, -5, 8, -2, 8;
2, -7, 13, -10, 10, 5;
2, -9, 20, -23, 20, -5, 12;
2, -11, 29, -43, 43, -25, 17, 7;
2, -13, 40, -72, 86, -68, 42, -10, 16;
2, -15, 53, -112, 158, -154, 110, -52, 26, 13;
2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18;
...
Cf.
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A141720,
A144400,
A174128.
-
p[x_, n_] = Sum[Prime[k + 1]*x^k*(1 - x)^(n - k), {k, 0, n}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
-
def p(n,x): return sum( nth_prime(j+1)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
Showing 1-10 of 12 results.
Comments