cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123221 Irregular triangle read by rows: the n-th row consists of the coefficients in the expansion of Sum_{j=0..n*(n+1)/2} A008302(n+1,j)*x^j*(1 - x)^(n - min(n, j)), where A008302 is the triangle of Mahonian numbers.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 2, 3, 5, 3, 1, 1, 0, 3, 5, 11, 22, 20, 15, 9, 4, 1, 1, 0, 4, 7, 18, 41, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 0, 5, 9, 26, 64, 154, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 1, 0, 6, 11, 35, 91, 234, 583
Offset: 0

Views

Author

Roger L. Bagula, Oct 05 2006

Keywords

Examples

			Triangle begins:
    1;
    1;
    1, 0, 1, 1;
    1, 0, 2, 3,  5,  3,  1;
    1, 0, 3, 5, 11, 22, 20,  15,   9,  4,  1;
    1, 0, 4, 7, 18, 41, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1;
    ...
		

Crossrefs

Programs

  • Mathematica
    M[n_]:= CoefficientList[Product[1-x^j, {j, n}]/(1-x)^n, x];
    Table[CoefficientList[Sum[M[n+1][[m+1]]*x^m*(1-x)^(n -Min[n, m]), {m, 0, Binomial[n+1,2]}], x], {n, 0, 10}]//Flatten
  • Maxima
    A008302(n, k) := ratcoef(ratsimp(product((1 - x^j)/(1 - x), j, 1, n)), x, k)$
    P(x, n) := sum(A008302(n + 1, j)*x^j*(1 - x)^(n - min(n, j)), j, 0, n*(n + 1)/2)$
    create_list(ratcoef(expand(P(x, n)), x, k), n, 0, 10, k, 0, hipow(P(x, n), x)); /* Franck Maminirina Ramaharo, Oct 14 2018 */
    
  • Sage
    @CachedFunction
    def A008302(n,k):
        if (k<0 or k>binomial(n,2)): return 0
        elif (n==1 and k==0): return 1
        else: return A008302(n, k-1) + A008302(n-1, k) - A008302(n-1, k-n)
    def p(n,x): return sum( A008302(n+1, j)*x^j*(1-x)^(n-min(n, j)) for j in (0..binomial(n+1,2)) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 16 2021

Formula

T(n,k) = A008302(n+1,k) for n + 1 <= k <= n*(n + 1)/2, n > 1. - Franck Maminirina Ramaharo, Oct 14 2018

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 14 2018