A123222 Expansion of -x * (x-1) * (3*x^2-1) / (9*x^4-8*x^3+4*x-1).
1, 3, 9, 31, 109, 391, 1397, 4995, 17833, 63675, 227313, 811543, 2897269, 10343647, 36928061, 131837979, 470678161, 1680380979, 5999172633, 21417807055, 76464283837, 272987183095, 974598829637, 3479441311347, 12422046335161
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (4,0,-8,9).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(-x*(x-1)*(3*x^2-1)/(9*x^4-8*x^3+4*x-1))); // G. C. Greubel, Oct 12 2018 -
Maple
seq(coeff(series(-x*(x-1)*(3*x^2-1)/(9*x^4-8*x^3+4*x-1),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 13 2018
-
Mathematica
LinearRecurrence[{4,0,-8,9},{1,3,9,31},30] (* Harvey P. Dale, Jul 26 2018 *)
-
PARI
x='x+O('x^30); Vec(-x*(x-1)*(3*x^2-1)/(9*x^4-8*x^3+4*x-1)) \\ G. C. Greubel, Oct 12 2018
Formula
From Colin Barker, Oct 19 2012: (Start)
a(n) = 4*a(n-1) -8*a(n-3) +9*a(n-4).
G.f.: -x*(x-1)*(3*x^2-1)/(9*x^4-8*x^3+4*x-1). (End)
Extensions
Sequence edited by Joerg Arndt and Colin Barker, Oct 19 2012