cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123296 Number of permutations of n distinct letters (ABCD...) each of which appears 5 times and having n-2 fixed points.

Original entry on oeis.org

0, 25, 75, 150, 250, 375, 525, 700, 900, 1125, 1375, 1650, 1950, 2275, 2625, 3000, 3400, 3825, 4275, 4750, 5250, 5775, 6325, 6900, 7500, 8125, 8775, 9450, 10150, 10875, 11625, 12400, 13200, 14025, 14875, 15750, 16650, 17575, 18525, 19500, 20500, 21525, 22575
Offset: 0

Views

Author

Zerinvary Lajos, Nov 07 2006

Keywords

Comments

Number of n permutations (n>=2) of 6 objects t, u, v, z, x, y with repetition allowed, containing n-2 u's. Example: if n=2 then n-2=zero (0) u, a(1)=25 because we have tt, tv, tz, tx, ty, vt, vv, vz, vx, vy, zt, zv, zz, zx, zy, xt, xv, xz, xx, xy, yt, yv, yz, yx, yy. if n=3 then n-2=one (1) u, a(2)= 75, if n=4 then n-2=two (2) u, a(2)= 150, if n=5 then n-2=three (3) u a(3)= 250, etc. - Zerinvary Lajos, Aug 09 2008

Examples

			1
0, 0, 0, "0", 0, 1
1, 0, 25, 0, 100, 0, 100, 0, "25", 0, 1
2252, 15150, 48600, 99350, 144150, 156753, 131000, 87075, 45000,
19300, 6000, 1800, 250, "75", 0, 1
44127009, 274314600, 822998550, 1583402400, 2189652825, 2311947008,
1932997200, 1310330400, 731686550, 340071600, 132480756,
43364000, 11973150, 2760000, 541600, 84000, 12225, 1000, "150", 0, 1
etc...
		

Crossrefs

Cf. A059062.

Programs

  • GAP
    List([0..40], n-> 25*Binomial(n+1,2)); # G. C. Greubel, Mar 08 2019
  • Magma
    [25*Binomial(n+1,2): n in [0..40]]; // G. C. Greubel, Mar 08 2019
    
  • Maple
    p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); for n from 0 to 8 do seq(coeff(f(t, n, 5), t, m)/5!^n, m=0..5*n); od;
    seq(binomial(n+1,2)*5^2, n=0..44); # Zerinvary Lajos, Aug 09 2008
  • Mathematica
    LinearRecurrence[{3,-3,1}, {0,25,75}, 40] (* G. C. Greubel, Mar 08 2019 *)
  • PARI
    a(n)=25*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [25*binomial(n+1,2) for n in (0..40)] # G. C. Greubel, Mar 08 2019
    

Formula

From Zerinvary Lajos, Aug 09 2008: (Start)
G.f.: 25*x/(1-x)^3.
a(n) = C(n+1,2)*5^2 = 25*A000217(n), n >= 0. (End)
a(n) = 25*n + a(n-1) (with a(0)=0). - Vincenzo Librandi, Nov 13 2010
E.g.f.: (25/2)*x*(2+x)*exp(x). - G. C. Greubel, Mar 08 2019
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/25.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/25. (End)