A123296 Number of permutations of n distinct letters (ABCD...) each of which appears 5 times and having n-2 fixed points.
0, 25, 75, 150, 250, 375, 525, 700, 900, 1125, 1375, 1650, 1950, 2275, 2625, 3000, 3400, 3825, 4275, 4750, 5250, 5775, 6325, 6900, 7500, 8125, 8775, 9450, 10150, 10875, 11625, 12400, 13200, 14025, 14875, 15750, 16650, 17575, 18525, 19500, 20500, 21525, 22575
Offset: 0
Examples
1 0, 0, 0, "0", 0, 1 1, 0, 25, 0, 100, 0, 100, 0, "25", 0, 1 2252, 15150, 48600, 99350, 144150, 156753, 131000, 87075, 45000, 19300, 6000, 1800, 250, "75", 0, 1 44127009, 274314600, 822998550, 1583402400, 2189652825, 2311947008, 1932997200, 1310330400, 731686550, 340071600, 132480756, 43364000, 11973150, 2760000, 541600, 84000, 12225, 1000, "150", 0, 1 etc...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A059062.
Programs
-
GAP
List([0..40], n-> 25*Binomial(n+1,2)); # G. C. Greubel, Mar 08 2019
-
Magma
[25*Binomial(n+1,2): n in [0..40]]; // G. C. Greubel, Mar 08 2019
-
Maple
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); for n from 0 to 8 do seq(coeff(f(t, n, 5), t, m)/5!^n, m=0..5*n); od; seq(binomial(n+1,2)*5^2, n=0..44); # Zerinvary Lajos, Aug 09 2008
-
Mathematica
LinearRecurrence[{3,-3,1}, {0,25,75}, 40] (* G. C. Greubel, Mar 08 2019 *)
-
PARI
a(n)=25*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[25*binomial(n+1,2) for n in (0..40)] # G. C. Greubel, Mar 08 2019
Formula
From Zerinvary Lajos, Aug 09 2008: (Start)
G.f.: 25*x/(1-x)^3.
a(n) = C(n+1,2)*5^2 = 25*A000217(n), n >= 0. (End)
a(n) = 25*n + a(n-1) (with a(0)=0). - Vincenzo Librandi, Nov 13 2010
E.g.f.: (25/2)*x*(2+x)*exp(x). - G. C. Greubel, Mar 08 2019
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/25.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/25. (End)
Comments