cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A061793 a(n) = 25*n*(n + 1)/2 + 3.

Original entry on oeis.org

3, 28, 78, 153, 253, 378, 528, 703, 903, 1128, 1378, 1653, 1953, 2278, 2628, 3003, 3403, 3828, 4278, 4753, 5253, 5778, 6328, 6903, 7503, 8128, 8778, 9453, 10153, 10878, 11628, 12403, 13203, 14028, 14878, 15753, 16653, 17578, 18528, 19503, 20503, 21528, 22578, 23653
Offset: 0

Views

Author

Jason Earls, Jun 22 2001

Keywords

Comments

"If m is a triangular number, then so are 9*m+1, 25*m+3 and 49*m+6. (Euler, 1775)", see Burton in References. Note that A060544 is the same as 9*m+1 when m is triangular and that 9*(m*(m+1)/2)+1 is another formula for it.
9*m+1, 25*m+3 and 49*m+6 are special cases of the identity A000290(2*r + 1)*A000217(s) + A000217(r) = A000217((2*r + 1)*s + r). - Bruno Berselli, Mar 01 2018
Complementing the previous comment, with T(n) = A000217(n), 4*T(s)+1+s = T(2*s+1), 16*T(s)+3+2s = T(4*s+2) and 36*T(s)+6+3s = T(6*s+3) are special cases of the identity A000290(2*r)*T(s) + T(r) + r*s = T(2*r*s + r). - Charlie Marion, Mar 28 2018

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 17.

Crossrefs

Programs

  • GAP
    List([0..40],n->25*(n*(n+1)/2)+3); # Muniru A Asiru, Mar 30 2018
  • Maple
    [seq(25*(n*(n+1)/2)+3,n=0..40)]; # Muniru A Asiru, Mar 30 2018
  • Mathematica
    25*Accumulate[Range[0,40]]+3 (* Harvey P. Dale, Aug 26 2013 *)
  • PARI
    a(n) = 25*n*(n + 1)/2 + 3
    

Formula

a(n) = 25*A000217(n) + 3 = A123296(n) + 3.
From Elmo R. Oliveira, Oct 23 2024: (Start)
G.f.: (3 + 19*x + 3*x^2)/(1 - x)^3.
E.g.f.: (3 + 25*x + 25*x^2/2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Corrected by T. D. Noe, Oct 25 2006

A162940 a(n) = binomial(n+1,2)*6^2.

Original entry on oeis.org

0, 36, 108, 216, 360, 540, 756, 1008, 1296, 1620, 1980, 2376, 2808, 3276, 3780, 4320, 4896, 5508, 6156, 6840, 7560, 8316, 9108, 9936, 10800, 11700, 12636, 13608, 14616, 15660, 16740, 17856, 19008, 20196, 21420, 22680, 23976, 25308, 26676, 28080, 29520, 30996
Offset: 0

Views

Author

Zerinvary Lajos, Jul 18 2009, Jul 19 2009

Keywords

Comments

Number of n permutations (n>=2) of 7 objects s, t, u, v, z, x, y with repetition allowed, containing n-2 u's. Example: If n=2 then n-2 = zero (0) u, a(1)=36 because we have ss, st, sv, sz, sx, sy, ts, tt, tv, tz, tx, ty, vs, vt, vv, vz, vx, vy, zs, zt, zv, zz, zx, zy, xs, xt, xv, xz, xx, xy, ys, yt, yv, yz, yx, yy. If n=3 then n-2 = one (1) u, a(2) = 108, >> ssu, stu, etc. If n=4 then n-2 = two (2) u, a(2)= 216, >> ssuu, stuu, ..., txuu, etc. If n=5 then n-2 = three (3) u, a(3)=360, >> ssuuu, stuuu, ..., txuuu, etc.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 1, 2]*6^2, {n, 0, 58}]
  • PARI
    a(n)=18*n*(n+1) \\ Charles R Greathouse IV, Jun 16 2017

Formula

From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/9 - 1/18. (End)
From Amiram Eldar, Feb 22 2023: (Start)
a(n) = 18*n*(n+1) = 36*A000217(n) = 18*A002378(n).
Product_{n>=1} (1 - 1/a(n)) = -(18/Pi)*cos(sqrt(11)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = (18/Pi)*cos(sqrt(7)*Pi/6). (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 36*x/(1-x)^3.
E.g.f.: 18*x*(2 + x)*exp(x).
a(n) = 3*A049598(n) = 2*A163758(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A162942 a(n) = binomial(n+1,2)*7^2.

Original entry on oeis.org

0, 49, 147, 294, 490, 735, 1029, 1372, 1764, 2205, 2695, 3234, 3822, 4459, 5145, 5880, 6664, 7497, 8379, 9310, 10290, 11319, 12397, 13524, 14700, 15925, 17199, 18522, 19894, 21315, 22785, 24304, 25872, 27489, 29155, 30870, 32634, 34447, 36309
Offset: 0

Views

Author

Zerinvary Lajos, Jul 18 2009

Keywords

Comments

Number of n permutations (n>=2) of 8 objects r, s, t, u, v, z, x, y with repetition allowed, containing n-2 u's.

Examples

			If n=2 then n-2=zero (0) u, a(1) = 49 because we have sr, tr, vr, zr, xr, yr, rs, rt, rv, rz, rx, ry, ss, st, sv, sz, sx, sy, ts, tt, tv, tz, tx, ty, vs, vt, vv, vz, vx, vy, zs, zt, zv, zz, zx, zy, xs, xt, xv, xz, xx, xy, ys, yt, yv, yz, yx, yy. If n=3 then n-2 = one (1) u, a(2) = 147 >> ssu, stu, etc.. Tf n=4 then n-2 = two (2) u, a(2) = 294 >> ssuu, stuu, ..., txuu, etc.. If n=5 then n-2 = three (3) u, a(3) = 490 >> rsuuu, stuuu, ..., rxuuu, etc..
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 1, 2]*7^2, {n, 0, 58}]
  • PARI
    a(n)=49*binomial(n+1,2) \\ Charles R Greathouse IV, May 02 2014

Formula

a(n) = A027469(n+2). - R. J. Mathar, Jul 18 2009
G.f.: -49*x/(x-1)^3. - R. J. Mathar, May 02 2014
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/49.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/49. (End)
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 49*exp(x)*x*(2 + x)/2.
a(n) = 49*A000217(n) = 49*n*(n+1)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A305838 Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 5*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 5, 1, 10, 1, 15, 25, 1, 20, 75, 1, 25, 150, 125, 1, 30, 250, 500, 1, 35, 375, 1250, 625, 1, 40, 525, 2500, 3125, 1, 45, 700, 4375, 9375, 3125, 1, 50, 900, 7000, 21875, 18750, 1, 55, 1125, 10500, 43750, 65625, 15625, 1, 60, 1375, 15000, 78750, 175000, 109375
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013612 ((1+5*x)^n). The coefficients in the expansion of 1/(1-x-5x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.7913327..., when n approaches infinity. The row sums are A015440 (generalized Fibonacci numbers).

Examples

			Triangle begins:
  1;
  1;
  1,  5;
  1, 10;
  1, 15,   25;
  1, 20,   75;
  1, 25,  150,   125;
  1, 30,  250,   500;
  1, 35,  375,  1250,    625;
  1, 40,  525,  2500,   3125;
  1, 45,  700,  4375,   9375,    3125;
  1, 50,  900,  7000,  21875,   18750;
  1, 55, 1125, 10500,  43750,   65625,   15625;
  1, 60, 1375, 15000,  78750,  175000,  109375;
  1, 65, 1650, 20625, 131250,  393750,  437500,   78125;
  1, 70, 1950, 27500, 206250,  787500, 1312500,  625000;
  1, 75, 2275, 35750, 309375, 1443750, 3281250, 2812500,  390625;
  1, 80, 2625, 45500, 446875, 2475000, 7218750, 9375000, 3515625;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 380, 381.

Crossrefs

Row sums give A015440.
Cf. A000012 (column 0), A008587 (column 1), A123296 (column 2), A141480 (column 3).
Cf. A013612.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0,  t[n - 1, k] + 5 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1/(1 - t*x - 5*t^2).
Showing 1-5 of 5 results.