A123346 Mirror image of the Bell triangle A011971, which is also called the Pierce triangle or Aitken's array.
1, 2, 1, 5, 3, 2, 15, 10, 7, 5, 52, 37, 27, 20, 15, 203, 151, 114, 87, 67, 52, 877, 674, 523, 409, 322, 255, 203, 4140, 3263, 2589, 2066, 1657, 1335, 1080, 877, 21147, 17007, 13744, 11155, 9089, 7432, 6097, 5017, 4140, 115975, 94828, 77821, 64077, 52922, 43833, 36401, 30304, 25287, 21147
Offset: 0
Examples
Triangle begins: 1 2 1 5 3 2 15 10 7 5 52 37 27 20 15 203 151 114 87 67 52 ...
References
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- A. Dil, Veli Kurt, Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices, J. Int. Seq. 14 (2011) # 11.4.6
- Don Knuth, Email to N. J. A. Sloane, Jan 29 2018
- Eric Weisstein's World of Mathematics, Bell Triangle.
Crossrefs
Programs
-
Haskell
a123346 n k = a123346_tabl !! n !! k a123346_row n = a123346_tabl !! n a123346_tabl = map reverse a011971_tabl -- Reinhard Zumkeller, Dec 09 2012
-
Mathematica
a[n_, k_] := Sum[Binomial[n - k, i - k] BellB[i], {i, k, n}]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
-
Python
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs. from itertools import accumulate A123346_list = blist = [1] for _ in range(2*10**2): b = blist[-1] blist = list(accumulate([b]+blist)) A123346_list += reversed(blist) # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
Formula
a(n,k) = Sum_{i=k..n} binomial(n-k,i-k)*Bell(i). - Vladeta Jovovic, Oct 14 2006
Extensions
More terms from Alexander Adamchuk and Vladeta Jovovic, Oct 14 2006
Comments