cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123346 Mirror image of the Bell triangle A011971, which is also called the Pierce triangle or Aitken's array.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 15, 10, 7, 5, 52, 37, 27, 20, 15, 203, 151, 114, 87, 67, 52, 877, 674, 523, 409, 322, 255, 203, 4140, 3263, 2589, 2066, 1657, 1335, 1080, 877, 21147, 17007, 13744, 11155, 9089, 7432, 6097, 5017, 4140, 115975, 94828, 77821, 64077, 52922, 43833, 36401, 30304, 25287, 21147
Offset: 0

Views

Author

N. J. A. Sloane, Oct 14 2006

Keywords

Comments

a(n,k) is k-th difference of Bell numbers, with a(n,1) = A000110(n) for n>0, a(n,k) = a(n,k-1) - a(n-1, k-1), k<=n, with diagonal (k=n) also equal to Bell numbers (n>=0). - Richard R. Forberg, Jul 13 2013
From Don Knuth, Jan 29 2018: (Start)
If the offset here is changed from 0 to 1, then we can say:
a(n,k) is the number of equivalence classes of [n] in which 1 not equiv to 2, ..., 1 not equiv to k.
In Volume 4A, page 418, I pointed out that a(n,k) is the number of set partitions in which k is the smallest of its block.
And in exercise 7.2.1.5--33, I pointed out that a(n,k) is the number of equivalence relations in which 1 not equiv to 2, 2 not equiv to 3, ..., k-1 not equiv to k. (End)

Examples

			Triangle begins:
    1
    2   1
    5   3   2
   15  10   7  5
   52  37  27 20 15
  203 151 114 87 67 52
  ...
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).

Crossrefs

Cf. A011971. Borders give Bell numbers A000110. Diagonals give A005493, A011965, A011966, A011968, A011969, A046934, A011972, A094577, A095149, A106436, A108041, A108042, A108043.

Programs

  • Haskell
    a123346 n k = a123346_tabl !! n !! k
    a123346_row n = a123346_tabl !! n
    a123346_tabl = map reverse a011971_tabl
    -- Reinhard Zumkeller, Dec 09 2012
    
  • Mathematica
    a[n_, k_] := Sum[Binomial[n - k, i - k] BellB[i], {i, k, n}];
    Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A123346_list = blist = [1]
    for _ in range(2*10**2):
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        A123346_list += reversed(blist)
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

a(n,k) = Sum_{i=k..n} binomial(n-k,i-k)*Bell(i). - Vladeta Jovovic, Oct 14 2006

Extensions

More terms from Alexander Adamchuk and Vladeta Jovovic, Oct 14 2006