cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123347 Number of words of length n over the alphabet {1,2,3,4,5} such that 1 is not followed by an odd letter.

Original entry on oeis.org

1, 5, 22, 98, 436, 1940, 8632, 38408, 170896, 760400, 3383392, 15054368, 66984256, 298045760, 1326151552, 5900697728, 26255094016, 116821771520, 519797274112, 2312832639488, 10290925106176, 45789365703680, 203739313027072, 906535983515648, 4033622560116736
Offset: 0

Views

Author

N. J. A. Sloane, Oct 10 2006

Keywords

Comments

Appears to be Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).

Examples

			a(2) = 22 because all 25 words of length 2 are included except 11, 13 and 15.
		

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 78).

Crossrefs

Cf. A138395.

Programs

  • Magma
    I:=[1, 5]; [n le 2 select I[n] else 4*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 29 2018
    
  • Maple
    seq(coeff(series((1+x)/(1-4*x-2*x^2),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Nov 27 2018
  • Mathematica
    LinearRecurrence[{4, 2}, {1, 5}, 30] (* Amiram Eldar, Nov 26 2018 *)
  • PARI
    Vec((1 + x)/(1 - 4*x - 2*x^2) + O(x^30)) \\ Andrew Howroyd, Nov 25 2018
    
  • Sage
    s=((1+x)/(1-4*x-2*x^2)).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 29 2018

Formula

From Klaus Brockhaus, Oct 03 2009: (Start)
Inverse binomial transform of A138395.
a(n) = ((2+sqrt(6))^(n+1) + (2-sqrt(6))^(n+1))/4.
a(n) = 4*a(n-1) + 2*a(n-2) for n > 1.
G.f.: (1 + x)/(1 - 4*x - 2*x^2).
(End)
a(n) = A090017(n+1)+A090017(n). - R. J. Mathar, Aug 04 2019

Extensions

Edited and new name by Armend Shabani and Andrew Howroyd, Nov 25 2018