A123347 Number of words of length n over the alphabet {1,2,3,4,5} such that 1 is not followed by an odd letter.
1, 5, 22, 98, 436, 1940, 8632, 38408, 170896, 760400, 3383392, 15054368, 66984256, 298045760, 1326151552, 5900697728, 26255094016, 116821771520, 519797274112, 2312832639488, 10290925106176, 45789365703680, 203739313027072, 906535983515648, 4033622560116736
Offset: 0
Examples
a(2) = 22 because all 25 words of length 2 are included except 11, 13 and 15.
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 78).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 17.
- Index entries for linear recurrences with constant coefficients, signature (4, 2).
Crossrefs
Cf. A138395.
Programs
-
Magma
I:=[1, 5]; [n le 2 select I[n] else 4*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 29 2018
-
Maple
seq(coeff(series((1+x)/(1-4*x-2*x^2),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Nov 27 2018
-
Mathematica
LinearRecurrence[{4, 2}, {1, 5}, 30] (* Amiram Eldar, Nov 26 2018 *)
-
PARI
Vec((1 + x)/(1 - 4*x - 2*x^2) + O(x^30)) \\ Andrew Howroyd, Nov 25 2018
-
Sage
s=((1+x)/(1-4*x-2*x^2)).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 29 2018
Formula
From Klaus Brockhaus, Oct 03 2009: (Start)
Inverse binomial transform of A138395.
a(n) = ((2+sqrt(6))^(n+1) + (2-sqrt(6))^(n+1))/4.
a(n) = 4*a(n-1) + 2*a(n-2) for n > 1.
G.f.: (1 + x)/(1 - 4*x - 2*x^2).
(End)
Extensions
Edited and new name by Armend Shabani and Andrew Howroyd, Nov 25 2018
Comments