cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123480 Coefficients of the series giving the best rational approximations to sqrt(3).

Original entry on oeis.org

4, 60, 840, 11704, 163020, 2270580, 31625104, 440480880, 6135107220, 85451020204, 1190179175640, 16577057438760, 230888624967004, 3215863692099300, 44791203064423200, 623860979209825504, 8689262505873133860, 121025814103014048540, 1685672134936323545704
Offset: 1

Views

Author

Gene Ward Smith, Sep 28 2006

Keywords

Comments

The partial sums of the series 2 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(3), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [1;1,2,1], [1;1,2,1,2,1], [1;1,2,1,2,1,2,1], [1;1,2,1,2,1,2,1,2,1] and so forth.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-4*x/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(-4*x/((x-1)*(x^2-14*x+1))) \\ G. C. Greubel, Oct 13 2017

Formula

a(n+3) = 15*a(n+2) - 15*a(n+1) + a(n).
a(n) = -1/3 + (1/6 + 1/12*3^(1/2))*(7 + 4*3^(1/2))^n + (1/6 - 1/12*3^(1/2))*(7 - 4*3^(1/2))^n.
a(n) = 4*A076139(n) = 2*A217855(n) = 1/2*A045899(n) = 4/3*A076140(n). - Peter Bala, Dec 31 2012
G.f.: -4*x/((x-1)*(x^2-14*x+1)). - Colin Barker, Jan 20 2013
a(n) = A001353(n)*A001353(n+1). - Antonio Alberto Olivares, Apr 06 2020