Original entry on oeis.org
1, 2, 13, 98, 884, 8712, 92033, 1022450, 11819620, 141052808, 1727897780, 21634496072, 275950213712, 3576314656800, 46995009879033, 625082413914450, 8403885788094500, 114069363868845000, 1561609591376307572
Offset: 0
-
T[, 0] = 1; T[n, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]*Binomial[n/#, k/#]^2, 0] &];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* A123610 *)
Table[T[2*n, n], {n, 0, 50}] (* A123617 *)
Table[T[2*n + 2, n], {n, 0, 50}] (* A123618 *)
Table[T[2*n + 2,n]/(n+1), {n, 0, 50}] (* A123619 *)
(* G. C. Greubel, Oct 26 2017 *)
-
{a(n)=if(n==0,1,(1/(2*(n+1)^2))*sumdiv(2*n+2,d,if(gcd(n,d)==d, eulerphi(d)*binomial((2*n+2)/d,n/d)^2,0)))}
A123610
Triangle read by rows, where T(n,k) = (1/n)*Sum_{d|(n,k)} phi(d) * binomial(n/d,k/d)^2 for n >= k > 0, with T(n,0) = 1 for n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 20, 20, 5, 1, 1, 6, 39, 68, 39, 6, 1, 1, 7, 63, 175, 175, 63, 7, 1, 1, 8, 100, 392, 618, 392, 100, 8, 1, 1, 9, 144, 786, 1764, 1764, 786, 144, 9, 1, 1, 10, 205, 1440, 4420, 6352, 4420, 1440, 205, 10, 1, 1, 11, 275, 2475, 9900
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 10, 4, 1;
1, 5, 20, 20, 5, 1;
1, 6, 39, 68, 39, 6, 1;
1, 7, 63, 175, 175, 63, 7, 1;
1, 8, 100, 392, 618, 392, 100, 8, 1;
1, 9, 144, 786, 1764, 1764, 786, 144, 9, 1;
1, 10, 205, 1440, 4420, 6352, 4420, 1440, 205, 10, 1;
...
Example of column g.f.s are:
column 1: 1/(1 - x)^2;
column 2: Ser([1, 1, 3, 1]) / ((1 - x)^2*(1 - x^2)^2) = g.f. of A005997;
column 3: Ser([1, 2, 11, 26, 30, 26, 17, 6, 1]) / ((1 - x)^2*(1 - x^2)^2*(1 -x^3)^2);
column 4: Ser([1, 3, 28, 94, 240, 440, 679, 839, 887, 757, 550, 314, 148, 48, 11, 1]) / ((1 - x)^2*(1 - x^2)^2*(1 - x^3)^2*(1 - x^4)^2);
where Ser() denotes a polynomial in x with the given coefficients, as in Ser([1, 1, 3, 1]) = (1 + x + 3*x^2 + x^3).
-
T[, 0] = 1; T[n, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]* Binomial[n/#, k/#]^2, 0]&]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
-
{T(n,k)=if(k==0,1,(1/n)*sumdiv(n,d,if(gcd(k,d)==d, eulerphi(d)*binomial(n/d,k/d)^2,0)))}
A123617
Central terms of triangle A123610: a(n) = A123610(2*n,n).
Original entry on oeis.org
1, 2, 10, 68, 618, 6352, 71188, 841332, 10352618, 131328068, 1706742160, 22619741212, 304685855700, 4160480013848, 57476485976388, 802048167035968, 11290551106506218, 160168176177137896, 2287724464324213972
Offset: 0
-
T[, 0] = 1; T[n, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]*Binomial[n/#, k/#]^2, 0] &];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* A123610 *)
Table[T[2*n, n], {n, 0, 50}] (* A123617 *)
Table[T[2*n + 2, n], {n, 0, 50}] (* A123618 *)
Table[T[2*n + 2,n]/(n+1), {n, 0, 50}] (* A123619 *)
(* G. C. Greubel, Oct 26 2017 *)
-
{a(n)=if(n==0,1,(1/2/n)*sumdiv(2*n,d,if(gcd(n,d)==d, eulerphi(d)*binomial(2*n/d,n/d)^2,0)))}
Original entry on oeis.org
1, 2, 4, 8, 20, 52, 160, 492, 1620, 5408, 18504, 64132, 225440, 800048, 2865720, 10341208, 37568340, 137270956, 504176992, 1860277044, 6892335720, 25631327688, 95640894056, 357975249028, 1343650267296, 5056424257552
Offset: 0
-
Total /@ Table[If[k == 0, 1, 1/n DivisorSum[n, If[Divisible[k, #], EulerPhi[#] Binomial[n/#, k/#]^2, 0] &]], {n, 0, 25}, {k, 0, n}] (* Michael De Vlieger, Apr 03 2017, after Jean-François Alcover at A123610 *)
-
{a(n)=sum(k=0,n,if(k==0,1,(1/n)*sumdiv(n,d,if(gcd(k,d)==d, eulerphi(d)*binomial(n/d,k/d)^2,0))))}
A123612
Antidiagonal sums of triangle A123610.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 17, 31, 68, 145, 325, 728, 1685, 3891, 9140, 21565, 51311, 122666, 295037, 712477, 1728262, 4207027, 10276693, 25178708, 61866141, 152397945, 376309596, 931239093, 2309219447, 5737078442, 14278587533, 35595622719
Offset: 0
-
Total /@ Table[Function[m, If[k == 0, 1, 1/m DivisorSum[m, If[GCD[k, #] == #, EulerPhi[#] Binomial[m/#, k/#]^2, 0] &]]][n - k + 1], {n, -1, 30}, {k, 0, Ceiling[n/2]}] (* Michael De Vlieger, Apr 03 2017, after Jean-François Alcover at A123610 *)
-
{a(n)=sum(k=0,n\2,if(k==0,1,(1/(n-k))*sumdiv(n-k,d,if(gcd(k,d)==d, eulerphi(d)*binomial((n-k)/d,k/d)^2,0))))}
Showing 1-5 of 5 results.
Comments