cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123654 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+809)^2 = y^2.

Original entry on oeis.org

0, 264, 1491, 2427, 3811, 10764, 16180, 24220, 64711, 96271, 143127, 379120, 563064, 836160, 2211627, 3283731, 4875451, 12892260, 19140940, 28418164, 75143551, 111563527, 165635151, 437970664, 650241840, 965394360, 2552682051
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 03 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+809, y).
Corresponding values y of solutions (x, y) are in A160203.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (873+232*sqrt(2))/809 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (989043+524338*sqrt(2))/809^2 for n mod 3 = 0.

Crossrefs

Cf. A160203, A001652, A115135, A156035 (decimal expansion of 3+2*sqrt(2)), A160204 (decimal expansion of (873+232*sqrt(2))/809), A160205 (decimal expansion of (989043+524338*sqrt(2))/809^2).

Programs

  • Magma
    I:=[0,264,1491,2427,3811,10764,16180]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,264,1491,2427,3811,10764,16180}, 50] (* G. C. Greubel, May 04 2018 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1618*n+654481), print1(n, ",")))}
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(264+1227*x+936*x^2-200*x^3 -409*x^4 -200*x^5)/((1-x)*(1-6*x^3 +x^6)))) \\ G. C. Greubel, May 04 2018
    

Formula

a(n) = 6*a(n-3)-a(n-6)+1618 for n > 6; a(1)=0, a(2)=264, a(3)=1491, a(4)=2427, a(5)=3811, a(6)=10764.
G.f.: x*(264+1227*x+936*x^2-200*x^3-409*x^4-200*x^5) / ((1-x)*(1-6*x^3 +x^6)).
a(3*k+1) = 809*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, May 18 2009