cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A129857 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+857)^2 = y^2.

Original entry on oeis.org

0, 235, 1696, 2571, 3796, 12075, 17140, 24255, 72468, 101983, 143448, 424447, 596472, 838147, 2475928, 3478563, 4887148, 14432835, 20276620, 28486455, 84122796, 118182871, 166033296, 490305655, 688822320, 967715035, 2857712848
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 03 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+857, y).
Corresponding values y of solutions (x, y) are in A160206.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (907+210*sqrt(2))/857 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1208787+678878*sqrt(2))/857^2 for n mod 3 = 0.

Crossrefs

Cf. A160206, A001652, A123654, A156035 (decimal expansion of 3+2*sqrt(2)), A160207 (decimal expansion of (907+210*sqrt(2))/857), A160208 (decimal expansion of (1208787+678878*sqrt(2))/857^2).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat  Coefficients(R!(x*(235+1461*x+875*x^2-185*x^3-487*x^4-185*x^5)/((1-x)*(1-6*x^3+x^6))) );  // G. C. Greubel, May 03 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,235,1696,2571,3796,12075, 17140}, 30] (* or *) CoefficientList[Series[x (235+1461x+875x^2-185x^3- 487x^4- 185x^5)/((1-x)(1-6x^3+x^6)),{x,0,30}],x] (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1714*n+734449), print1(n, ",")))}
    

Formula

a(n) = 6*a(n-3)-a(n-6)+1714 for n > 6; a(1)=0, a(2)=235, a(3)=1696, a(4)=2571, a(5)=3796, a(6)=12075.
G.f.: x*(235+1461*x+875*x^2-185*x^3-487*x^4-185*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 857*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, May 18 2009

A160204 Decimal expansion of (873+232*sqrt(2))/809.

Original entry on oeis.org

1, 4, 8, 4, 6, 6, 9, 4, 0, 2, 3, 1, 2, 1, 8, 5, 4, 7, 7, 5, 3, 0, 2, 7, 4, 1, 4, 5, 8, 7, 9, 6, 6, 6, 1, 9, 8, 0, 5, 7, 0, 6, 2, 8, 8, 6, 3, 8, 7, 4, 5, 6, 0, 6, 0, 5, 4, 0, 1, 6, 0, 3, 2, 0, 4, 1, 2, 6, 6, 9, 8, 8, 2, 5, 7, 5, 0, 4, 1, 8, 2, 0, 7, 8, 2, 8, 0, 5, 8, 1, 9, 4, 8, 5, 8, 0, 0, 7, 9, 7, 1, 2, 5, 4, 9
Offset: 1

Views

Author

Klaus Brockhaus, May 18 2009

Keywords

Comments

Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A123654.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A160203.

Examples

			(873+232*sqrt(2))/809 = 1.48466940231218547753...
		

Crossrefs

Cf. A123654, A160203, A002193 (decimal expansion of sqrt(2)), A160205 (decimal expansion of (989043+524338*sqrt(2))/809^2).

Programs

  • Magma
    (873+232*Sqrt(2))/809; // G. C. Greubel, Apr 25 2018
  • Mathematica
    RealDigits[(873+232Sqrt[2])/809,10,120][[1]] (* Harvey P. Dale, Mar 22 2018 *)
  • PARI
    (873+232*sqrt(2))/809 \\ G. C. Greubel, Apr 25 2018
    

Formula

Equals (29+4*sqrt(2))/(29-4*sqrt(2)).

A160205 Decimal expansion of (989043+524338*sqrt(2))/809^2.

Original entry on oeis.org

2, 6, 4, 4, 1, 8, 5, 1, 0, 3, 7, 1, 9, 7, 1, 6, 7, 0, 9, 4, 2, 1, 0, 2, 1, 9, 4, 2, 9, 9, 7, 0, 6, 8, 9, 3, 1, 1, 3, 9, 4, 2, 8, 9, 7, 0, 1, 1, 7, 3, 8, 7, 9, 7, 4, 2, 7, 7, 8, 0, 7, 7, 5, 9, 8, 2, 5, 8, 5, 3, 8, 9, 9, 9, 4, 7, 9, 9, 5, 8, 6, 3, 1, 9, 0, 4, 2, 7, 9, 8, 6, 4, 1, 1, 0, 4, 4, 6, 7, 0, 4, 5, 6, 0, 2
Offset: 11

Views

Author

Klaus Brockhaus, May 18 2009

Keywords

Comments

Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A123654.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A160203.

Examples

			(989043+524338*sqrt(2))/809^2 = 2.64418510371971670942...
		

Crossrefs

Cf. A123654, A160203, A002193 (decimal expansion of sqrt(2)), A160204 (decimal expansion of (873+232*sqrt(2))/809).

Programs

  • Magma
    (989043+524338*Sqrt(2))/809^2; // G. C. Greubel, Apr 25 2018
  • Mathematica
    RealDigits[(989043+524338*Sqrt[2])/809^2, 10, 100][[1]] (* G. C. Greubel, Apr 25 2018 *)
  • PARI
    (989043+524338*sqrt(2))/809^2 \\ G. C. Greubel, Apr 25 2018
    

Formula

Equals (1282 +409*sqrt(2))/(1282 -409*sqrt(2)).
Equals (3+2*sqrt(2))*(29-4*sqrt(2))^2/(29+4*sqrt(2))^2.

A160203 Positive numbers y such that y^2 is of the form x^2+(x+809)^2 with integer x.

Original entry on oeis.org

641, 809, 1105, 2741, 4045, 5989, 15805, 23461, 34829, 92089, 136721, 202985, 536729, 796865, 1183081, 3128285, 4644469, 6895501, 18232981, 27069949, 40189925, 106269601, 157775225, 234244049, 619384625, 919581401, 1365274369
Offset: 1

Views

Author

Klaus Brockhaus, May 18 2009

Keywords

Comments

(-200, a(1)) and (A123654(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+809)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (873+232*sqrt(2))/809 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (989043+524338*sqrt(2))/809^2 for n mod 3 = 1.

Examples

			(-200, a(1)) = (-200, 641) is a solution: (-200)^2+(-200+809)^2 = 40000+370881 = 410881 = 641^2.
(A123654(1), a(2)) = (0, 809) is a solution: 0^2+(0+809)^2 = 654481 = 809^2.
(A123654(3), a(4)) = (1491, 2741) is a solution: 1491^2+(1491+809)^2 = 2223081+5290000 = 7513081 = 2741^2.
		

Crossrefs

Cf. A123654, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160204 (decimal expansion of (873+232*sqrt(2))/809), A160205 (decimal expansion of (989043+524338*sqrt(2))/809^2).

Programs

  • PARI
    {forstep(n=-200, 10000000, [3, 1], if(issquare(2*n^2+1618*n+654481, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=641, a(2)=809, a(3)=1105, a(4)=2741, a(5)=4045, a(6)=5989.
G.f.: (1-x)*(641+1450*x+2555*x^2+1450*x^3+641*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 809*A001653(k) for k >= 1.

A201916 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.

Original entry on oeis.org

0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1

Views

Author

T. D. Noe, Feb 09 2012

Keywords

Comments

Note that 2737 = 7 * 17 * 23, the product of the first three distinct primes in A058529 (and A001132) and hence the smallest such number. This sequence satisfies a linear difference equation of order 55 whose 55 initial terms can be found by running the Mathematica program.
There are many sequences like this one. What determines the order of the linear difference equation? All primes p have order 7. For those p, it appears that p^2 has order 11, p^3 order 15, and p^i order 3+4*i. It appears that for semiprimes p*q (with p > q), the order is 19. What is the next term of the sequence beginning 3, 7, 19, 55, 163? This could be sequence A052919, which is 1 + 2*3^f, where f is the number of primes.
The crossref list is thought to be complete up to Feb 14 2012.

Crossrefs

Cf. A001652 (1), A076296 (7), A118120 (17), A118337 (23), A118674 (31).
Cf. A129288 (41), A118675 (47), A118554 (49), A118673 (71), A129289 (73).
Cf. A118676 (79), A129298 (89), A129836 (97), A157119 (103), A161478 (113).
Cf. A129837 (119), A129992 (127), A129544 (137), A161482 (151).
Cf. A206426 (161), A130608 (167), A161486 (191), A185394 (193).
Cf. A129993 (199), A198294 (217), A130609 (223), A129625 (233).
Cf. A204765 (239), A129991 (241), A207058 (263), A129626 (281).
Cf. A205644 (287), A207059 (289), A129640 (313), A205672 (329).
Cf. A129999 (337), A118611 (343), A130610 (359), A207060 (401).
Cf. A129641 (409), A207061 (433), A130645 (439), A130004 (449).
Cf. A129642 (457), A129725 (521), A101152 (569), A130005 (577).
Cf. A207075 (479), A207076 (487), A207077 (497), A207078 (511).
Cf. A111258 (601), A115135 (617), A130013 (647), A130646 (727).
Cf. A122694 (761), A123654 (809), A129010 (833), A130647 (839).
Cf. A129857 (857), A130014 (881), A129974 (937), A129975 (953).
Cf. A130017 (967), A118630 (2401), A118576 (16807).

Programs

  • Mathematica
    d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t

Formula

a(n) = a(n-1) + 6*a(n-27) - 6*a(n-28) - a(n-54) + a(n-55), where the 55 initial terms can be computed using the Mathematica program.
G.f.: x^2*(73*x^53 +116*x^52 +100*x^51 +171*x^50 +104*x^49 +184*x^48 +57*x^47 +92*x^46 +55*x^45 +80*x^44 +88*x^43 +53*x^42 +139*x^41 +113*x^40 +139*x^39 +53*x^38 +88*x^37 +80*x^36 +55*x^35 +92*x^34 +57*x^33 +184*x^32 +104*x^31 +171*x^30 +100*x^29 +116*x^28 +73*x^27 -363*x^26 -568*x^25 -480*x^24 -797*x^23 -468*x^22 -792*x^21 -235*x^20 -368*x^19 -213*x^18 -300*x^17 -316*x^16 -183*x^15 -453*x^14 -339*x^13 -381*x^12 -135*x^11 -212*x^10 -180*x^9 -117*x^8 -184*x^7 -107*x^6 -312*x^5 -156*x^4 -229*x^3 -120*x^2 -128*x -75) / ((x -1)*(x^54 -6*x^27 +1)). - Colin Barker, May 18 2015
Showing 1-5 of 5 results.