cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123737 Partial sums of (-1)^floor(n*sqrt(2)).

Original entry on oeis.org

-1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, -2, -1, -2, -3, -2, -1, -2, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 1

Views

Author

T. D. Noe, Oct 11 2006

Keywords

Comments

Conjecture: A001652(n) is the index of the first occurrence of n in sequence A123737, A001108(n) is the index of the first occurrence of -n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015

Crossrefs

Cf. A123724 (sum for 2^(1/3)), A123738 (sum for Pi), A123739 (sum for e).

Programs

  • Magma
    [&+[(-1)^Floor(j*Sqrt(2)): j in [1..n]]: n in [1..130]]; // G. C. Greubel, Sep 05 2019
    
  • Maple
    ListTools:-PartialSums([seq((-1)^floor(n*sqrt(2)),n=1..100)]); # Robert Israel, Jun 02 2015
  • Mathematica
    Rest[FoldList[Plus,0,(-1)^Floor[Sqrt[2]*Range[120]]]]
    Accumulate[(-1)^Floor[Range[120]Sqrt[2]]] (* Harvey P. Dale, Jan 16 2012 *)
    (* The positions of the first occurrences of n and -n in this sequence: *) stab = Rest[FoldList[Plus,0,(-1)^Floor[Sqrt[2]*Range[1000000]]]]; Print[Table[FirstPosition[stab,n][[1]],{n,1,8}]]; Print[Table[FirstPosition[stab,-n][[1]],{n,1,8}]]; (* Vaclav Kotesovec, Jun 02 2015 *)
  • PARI
    a(n)=sum(i=1,n,(-1)^sqrtint(2*i^2)) \\ Charles R Greathouse IV, Feb 07 2013
    
  • Sage
    [sum((-1)^floor(j*sqrt(2)) for j in (1..n)) for n in (1..130)] # G. C. Greubel, Sep 05 2019

Formula

O'Bryant, Reznick, & Serbinowska show that |a(n)| <= k log n + 1, with k = 1/(2 log (1 + sqrt(2))), and further -a(n) > k log n + 0.78 infinitely often. - Charles R Greathouse IV, Feb 07 2013