cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A083037 a(n)=2*A083036(n)-n. Also -A123737(n).

Original entry on oeis.org

1, 0, -1, 0, 1, 0, 1, 2, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 3, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0
Offset: 1

Views

Author

Benoit Cloitre, Apr 17 2003

Keywords

Crossrefs

Programs

Formula

O'Bryant, Reznick, & Serbinowska show that |a(n)| <= k log n + 1, with k = 1/(2 log (1 + sqrt(2))), and further a(n) > k log n + 0.78 infinitely often. - Charles R Greathouse IV, Feb 07 2013

A001652 a(n) = 6*a(n-1) - a(n-2) + 2 with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 20, 119, 696, 4059, 23660, 137903, 803760, 4684659, 27304196, 159140519, 927538920, 5406093003, 31509019100, 183648021599, 1070379110496, 6238626641379, 36361380737780, 211929657785303, 1235216565974040, 7199369738058939, 41961001862379596, 244566641436218639
Offset: 0

Views

Author

Keywords

Comments

Consider all Pythagorean triples (X, X+1, Z) ordered by increasing Z; sequence gives X values.
Numbers n such that triangular number t(n) (see A000217) = n(n+1)/2 is a product of two consecutive integers (cf. A097571).
Members of Diophantine pairs. Solution to a*(a+1) = 2*b*(b+1) in natural numbers including 0; a = a(n), b = b(n) = A053141(n); The solution of a special case of a binomial problem of H. Finner and K. Strassburger (strass(AT)godot.dfi.uni-duesseldorf.de).
The index of all triangular numbers T(a(n)) for which 4T(n)+1 is a perfect square.
The three sequences x (A001652), y (A046090) and z (A001653) may be obtained by setting u and v equal to the Pell numbers (A000129) in the formulas x = 2uv, y = u^2 - v^2, z = u^2 + v^2 [Joseph Wiener and Donald Skow]. - Antonio Alberto Olivares, Dec 22 2003
All Pythagorean triples {X(n), Y(n)=X(n)+1, Z(n)} with X M*W(n), where W(n)=transpose of vector [X(n) Y(n) Z(n)] and M a 3 X 3 matrix given by [2 1 2 / 1 2 2 / 2 2 3]. - Lekraj Beedassy, Aug 14 2006
Let b(n) = A053141 then a(n)*b(n+1) = b(n)*a(n+1) + b(n). - Kenneth J Ramsey, Sep 22 2007
In general, if b(n) = A053141(n), then a(n)*b(n+k) = a(n+k)*b(n)+b(k); e.g., 3*84 = 119*2+14; 3*2870 = 4059*2+492; 20*2870 = 5741*14+84. - Charlie Marion, Nov 19 2007
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2) = A156035. - Klaus Brockhaus, Feb 17 2009
If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q+1) are perfect squares. If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q)/8 are perfect squares. If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X+1)^2 = Y^2 with pMohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X + 1)^2 = y^2 with pMohamed Bouhamida, Sep 02 2009
a(n+k) = A001541(k)*a(n) + A001542(k)*A001653(n+1) + A001108(k). - Charlie Marion, Dec 10 2010
The numbers 3*A001652 = (0, 9, 60, 357, 2088, 12177, 70980, ...) are all the nonnegative values of X such that X^2 + (X+3)^2 = Z^2 (Z is in A075841). - Bruno Berselli, Aug 26 2010
Let T(n) = n*(n+1)/2 (the n-th triangular number). For n > 0,
T(a(n) + 2*k*A001653(n+1)) = 2*T(A053141(n-1) + k*A002315(n)) + k^2 and
T(a(n) + (2*k+1)*A001653(n+1)) = (A001109(n+1) + k*A002315(n))^2 + k*(k+1).
Also (a(n) + k*A001653(n))^2 + (a(n) + k*A001653(n) + 1)^2 = (A001653(n+1) + k*A002315(n))^2 + k^2. - Charlie Marion, Dec 09 2010
For n>0, A143608(n) divides a(n). - Kenneth J Ramsey, Jun 28 2012
Set a(n)=p; a(n)+1=q; the generated triple x=p^2+pq; y=q^2+pq; k=p^2+q^2 satisfies x^2+y^2=k(x+y). - Carmine Suriano, Dec 17 2013
The arms of the triangle are found with (b(n),c(n)) for 2*b(n)*c(n) and c(n)^2 - b(n)^2. Let b(1) = 1 and c(1) = 2, then b(n) = c(n-1) and c(n) = 2*c(n-1) + b(n-1). Alternatively, b(n) = c(n-1) and c(n) equals the nearest integer to b(n)*(1+sqrt(2)). - J. M. Bergot, Oct 09 2014
Conjecture: For n>1 a(n) is the index of the first occurrence of n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015
Numbers m such that Product_{k=1..m} (4*k^4+1) is a square (see A274307). - Chai Wah Wu, Jun 21 2016
Numbers m such that m^2+(m+1)^2 is a square. - César Aguilera, Aug 14 2017
For integers a and d, let P(a,d,1) = a, P(a,d,2) = a+d, and, for n>2, P(a,d,n) = 2*P(a,d,n-1) + P(a,d,n-2). Further, let p(n) = Sum_{i=1..2n} P(a,d,i). Then p(n)^2 + (p(n)+d)^2 + a^2 = P(a,d,2n+1)^2 + d^2. When a = 1 and d = 1, p(n) = a(n) and P(a,d,n) = A000129(n), the n-th Pell number. - Charlie Marion, Dec 08 2018
The terms of this sequence satisfy the Diophantine equation k^2 + (k+1)^2 = m^2, which is equivalent to (2k+1)^2 - 2*m^2 = -1. Now, with x=2k+1 and y=m, we get the Pell-Fermat equation x^2 - 2*y^2 = -1. The solutions (x,y) of this equation are respectively in A002315 and A001653. The relation k = (x-1)/2 explains Lekraj Beedassy's Nov 25 2003 formula. Thus, the corresponding numbers m = y, which express the length of the hypotenuse of these right triangles (k,k+1,m) are in A001653. - Bernard Schott, Mar 10 2019
Members of Diophantine pairs. Related to solutions of p^2 = 2q^2 + 2 in natural numbers; p = p(n) = 2*sqrt(4T(a(n))+1), q = q(n) = sqrt(8*T(a(n))+1). Note that this implies that 4*T(a(n))+1 is a perfect square (numbers of the form 8*T(n)+1 are perfect squares for all n); these T(a(n))'s are the only solutions to the given Diophantine equation. - Steven Blasberg, Mar 04 2021

Examples

			The first few triples are (0,1,1), (3,4,5), (20,21,29), (119,120,169), ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046090(n) = -a(-1-n).
Cf. A001108, A143608, A089950 (partial sums), A156035.
Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; m=0 for k=2; A233450 for k=3; this sequence for k=4; A129556 for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013
Cf. A002315, A001653 (solutions of x^2 - 2*y^2 = -1).

Programs

  • GAP
    a:=[0,3];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]+2; od; a; # Muniru A Asiru, Dec 08 2018
    
  • Haskell
    a001652 n = a001652_list !! n
    a001652_list = 0 : 3 : map (+ 2)
    (zipWith (-) (map (* 6) (tail a001652_list)) a001652_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ (-2+(r2+1)*(3+2*r2)^n-(r2-1)*(3-2*r2)^n)/4: n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Feb 17 2009
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(3-x)/((1-6*x+x^2)*(1-x)))); // G. C. Greubel, Jul 15 2018
    
  • Maple
    A001652 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[0,3]) ;
        else
            6*procname(n-1)-procname(n-2)+2 ;
        end if;
    end proc: # R. J. Mathar, Feb 05 2016
  • Mathematica
    LinearRecurrence[{7,-7,1}, {0,3,20}, 30] (* Harvey P. Dale, Aug 19 2011 *)
    With[{c=3+2*Sqrt[2]},NestList[Floor[c*#]+3&,3,30]] (* Harvey P. Dale, Oct 22 2012 *)
    CoefficientList[Series[x (3 - x)/((1 - 6 x + x^2) (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 21 2014 *)
    Table[(LucasL[2*n + 1, 2] - 2)/4, {n, 0, 30}] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    {a(n) = subst( poltchebi(n+1) - poltchebi(n) - 2, x, 3) / 4}; /* Michael Somos, Aug 11 2006 */
    
  • PARI
    concat(0, Vec(x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^50))) \\ Altug Alkan, Nov 08 2015
    
  • PARI
    {a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n};
    for(n=0, 30, print1(round((Q(2*n+1) - 2)/4), ", ")) \\ G. C. Greubel, Jul 15 2018
    
  • Sage
    (x*(3-x)/((1-6*x+x^2)*(1-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 08 2019

Formula

G.f.: x *(3 - x) / ((1 - 6*x + x^2) * (1 - x)). - Simon Plouffe in his 1992 dissertation
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). a_{n} = -1/2 + ((1-2^{1/2})/4)*(3 - 2^{3/2})^n + ((1+2^{1/2})/4)*(3 + 2^{3/2})^n. - Antonio Alberto Olivares, Oct 13 2003
a(n) = a(n-2) + 4*sqrt(2*(a(n-1)^2)+2*a(n-1)+1). - Pierre CAMI, Mar 30 2005
a(n) = (sinh((2*n+1)*log(1+sqrt(2)))-1)/2 = (sqrt(1+8*A029549)-1)/2. - Bill Gosper, Feb 07 2010
Binomial(a(n)+1,2) = 2*binomial(A053141(n)+1,2) = A029549(n). See A053141. - Bill Gosper, Feb 07 2010
Let b(n) = A046090(n) and c(n) = A001653(n). Then for k>j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n<0, a(n) = -b(-n-1). Also a(n)*a(n+2*k+1) + b(n)*b(n+2*k+1) + c(n)*c(n+2*k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2*k) + b(n)*b(n+2*k) + c(n)*c(n+2*k) = 2*c(n+k)^2. - Charlie Marion, Jul 01 2003
a(n)*a(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2 = A084703(n+1). - Charlie Marion, Jul 01 2003
For n and j >= 1, Sum_{k=0..j} A001653(k)*a(n) - Sum_{k=0...j-1} A001653(k)*a(n-1) + A053141(j) = A001109(j+1)*a(n) - A001109(j)*a(n-1) + A053141(j) = a(n+j). - Charlie Marion, Jul 07 2003
Sum_{k=0...n} (2*k+1)*a(n-k) = A001109(n+1) - A000217(n+1). - Charlie Marion, Jul 18 2003
a(n) = A055997(n) - 1 + sqrt(2*A055997(n)*A001108(n)). - Charlie Marion, Jul 21 2003
a(n) = {A002315(n) - 1}/2. - Lekraj Beedassy, Nov 25 2003
a(2*n+k) + a(k) + 1 = A001541(n)*A002315(n+k). For k>0, a(2*n+k) - a(k-1) = A001541(n+k)*A002315(n); e.g., 803760-119 = 19601*41. - Charlie Marion, Mar 17 2003
a(n) = (A001653(n+1) - 3*A001653(n) - 2)/4. - Lekraj Beedassy, Jul 13 2004
a(n) = {2*A084159(n) - 1 + (-1)^(n+1)}/2. - Lekraj Beedassy, Jul 21 2004
a(n+1) = 3*a(n) + sqrt(8*a(n)^2 + 8*a(n) +4) + 1, a(1)=0. - Richard Choulet, Sep 18 2007
As noted (Sep 20 2006), a(n) = 5*(a(n-1) + a(n-2)) - a(n-3) + 4. In general, for n > 2*k, a(n) = A001653(k)*(a(n-k) + a(n-k-1) + 1) - a(n-2*k-1) - 1. Also a(n) = 7*(a(n-1) - a(n-2)) + a(n-3). In general, for n > 2*k, A002378(k)*(a(n-k)-a(n-k-1)) + a(n-2*k-1). - Charlie Marion, Dec 26 2007
In general, for n >= k >0, a(n) = (A001653(n+k) - A001541(k) * A001653(n) - 2*A001109(k-1))/(4*A001109(k-1)); e.g., 4059 = (33461-3*5741-2*1)/(4*1); 4059 = (195025-17*5741-2*6)/(4*6). - Charlie Marion, Jan 21 2008
From Charlie Marion, Jan 04 2010: (Start)
a(n) = ( (1 + sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1) - 2)/4 = (A001333(2n+1) - 1)/2.
a(2*n+k-1) = Pell(2*n-1)*Pell(2*n+2*k) + Pell(2*n-2)*Pell(2*n+2*k+1) + A001108(k+1);
a(2*n+k) = Pell(2*n)*Pell(2*n+2*k+1) + Pell(2*n-1)*Pell(2*n+2*k+2) - A055997(k+2). (End)
a(n) = A048739(2*n-1) for n > 0. - Richard R. Forberg, Aug 31 2013
a(n+1) = 3*a(n) + 2*A001653(n) + 1 [Mohamed Bouhamida's 2009 (p,q)(r,s) comment above rewritten]. - Hermann Stamm-Wilbrandt, Jul 27 2014
a(n)^2 + (a(n)+1)^2 = A001653(n+1)^2. - Pierre CAMI, Mar 30 2005; clarified by Hermann Stamm-Wilbrandt, Aug 31 2014
a(n+1) = 3*A001541(n) + 10*A001109(n) + A001108(n). - Hermann Stamm-Wilbrandt, Sep 09 2014
For n>0, a(n) = Sum_{k=1..2*n} A000129(k). - Charlie Marion, Nov 07 2015
a(n) = 3*A053142(n) - A053142(n-1). - R. J. Mathar, Feb 05 2016
E.g.f.: (1/4)*(-2*exp(x) - (sqrt(2) - 1)*exp((3-2*sqrt(2))*x) + (1 + sqrt(2))*exp((3+2*sqrt(2))*x)). - Ilya Gutkovskiy, Apr 11 2016
a(n) = A001108(n) + 2*sqrt(A000217(A001108(n))). - Dimitri Papadopoulos, Jul 06 2017
a(A000217(n-1)) = ((A001653(n)+1)/2) * ((A001653(n)-1)/2), n > 1. - Ezhilarasu Velayutham, Mar 10 2019
a(n) = ((a(n-1)+1)*(a(n-1)-3))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
In general, for each k >= 0, a(n) = ((a(n-k)+a(k-1)+1)*(a(n-k)-a(k)))/a(n-2*k) for n > 2*k. - Charlie Marion, Dec 27 2020
A generalization of the identity a(n)^2 + A046090(n)^2 = A001653(n+1)^2 follows. Let P(k,n) be the n-th k-gonal number. Then P(k,a(n)) + P(k,A046090(n)) = P(k,A001653(n+1)) + (4-k)*A001109(n). - Charlie Marion, Dec 07 2021
a(n) = A046090(n)-1 = A002024(A029549(n)). - Pontus von Brömssen, Sep 11 2024

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000

A001108 a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, 11309768, 65918161, 384199200, 2239277041, 13051463048, 76069501249, 443365544448, 2584123765441, 15061377048200, 87784138523761, 511643454094368, 2982076586042449, 17380816062160328, 101302819786919521
Offset: 0

Views

Author

Keywords

Comments

b(0)=0, c(0)=1, b(i+1)=b(i)+c(i), c(i+1)=b(i+1)+b(i); then a(i) (the number in the sequence) is 2b(i)^2 if i is even, c(i)^2 if i is odd and b(n)=A000129(n) and c(n)=A001333(n). - Darin Stephenson (stephenson(AT)cs.hope.edu) and Alan Koch
For n > 1 gives solutions to A007913(2x) = A007913(x+1). - Benoit Cloitre, Apr 07 2002
If (X,X+1,Z) is a Pythagorean triple, then Z-X-1 and Z+X are in the sequence.
For n >= 2, a(n) gives exactly the positive integers m such that 1,2,...,m has a perfect median. The sequence of associated perfect medians is A001109. Let a_1,...,a_m be an (ordered) sequence of real numbers, then a term a_k is a perfect median if Sum_{j=1..k-1} a_j = Sum_{j=k+1..m} a_j. See Puzzle 1 in MSRI Emissary, Fall 2005. - Asher Auel, Jan 12 2006
This is the r=8 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Also, 1^3 + 2^3 + 3^3 + ... + a(n)^3 = k(n)^4 where k(n) is A001109. - Anton Vrba (antonvrba(AT)yahoo.com), Nov 18 2006
If T_x = y^2 is a triangular number which is also a square, the least number which is both triangular and square and greater than T_x is T_(3*x + 4*y + 1) = (2*x + 3*y + 1)^2 (W. Sierpiński 1961). - Richard Choulet, Apr 28 2009
If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or (a+1) is a perfect square. If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or a/8 is a perfect square. If (a,b) and (c,d) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c, then a+b = c-d and ((d+b)^2, d^2-b^2) is a solution, too. If (a,b), (c,d) and (e,f) are three consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c < e, then (8*d^2, d*(f-b)) is a solution, too. - Mohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with p < r, then r = 3p + 4q + 1 and s = 2p + 3q + 1. - Mohamed Bouhamida, Sep 02 2009
Also numbers k such that (ceiling(sqrt(k*(k+1)/2)))^2 - k*(k+1)/2 = 0. - Ctibor O. Zizka, Nov 10 2009
From Lekraj Beedassy, Mar 04 2011: (Start)
Let x=a(n) be the index of the associated triangular number T_x=1+2+3+...+x and y=A001109(n) be the base of the associated perfect square S_y=y^2. Now using the identity S_y = T_y + T_{y-1}, the defining T_x = S_y may be rewritten as T_y = T_x - T_{y-1}, or 1+2+3+...+y = y+(y+1)+...+x. This solves the Strand Magazine House Number problem mentioned in A001109 in references from Poo-Sung Park and John C. Butcher. In a variant of the problem, solving the equation 1+3+5+...+(2*x+1) = (2*x+1)+(2*x+3)+...+(2*y-1) implies S_(x+1) = S_y - S_x, i.e., with (x,x+1,y) forming a Pythagorean triple, the solutions are given by pairs of x=A001652(n), y=A001653(n). (End)
If P = 8*n +- 1 is a prime, then P divides a((P-1)/2); e.g., 7 divides a(3) and 41 divides a(20). Also, if P = 8*n +- 3 is prime, then 4*P divides (a((P-1)/2) + a((P+1)/2) + 3). - Kenneth J Ramsey, Mar 05 2012
Starting at a(2), a(n) gives all the dimensions of Euclidean k-space in which the ratio of outer to inner Soddy hyperspheres' radii for k+1 identical kissing hyperspheres is rational. The formula for this ratio is (1+3k+2*sqrt(2k*(k+1)))/(k-1) where k is the dimension. So for a(3) = 49, the ratio is 6 in the 49th dimension. See comment for A010502. - Frank M Jackson, Feb 09 2013
Conjecture: For n>1 a(n) is the index of the first occurrence of -n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015
For n=2*k, k>0, a(n) is divisible by 8 (deficient), so since all proper divisors of deficient numbers are deficient, then a(n) is deficient. For n=2*k+1, k>0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. sigma(a(5)) = 1723 < 3362 = 2*a(5). In either case, a(n) is deficient. - Muniru A Asiru, Apr 14 2016
The squares of NSW numbers (A008843) interleaved with twice squares from A084703, where A008843(n) = A002315(n)^2 and A084703(n) = A001542(n)^2. Conjecture: Also numbers n such that sigma(n) = A000203(n) and sigma(n-th triangular number) = A074285(n) are both odd numbers. - Jaroslav Krizek, Aug 05 2016
For n > 0, numbers for which the number of odd divisors of both n and of n + 1 is odd. - Gionata Neri, Apr 30 2018
a(n) will be solutions to some (A000217(k) + A000217(k+1))/2. - Art Baker, Jul 16 2019
For n >= 2, a(n) is the base for which A058331(A001109(n)) is a length-3 repunit. Example: for n=2, A001109(2)=6 and A058331(6)=73 and 73 in base a(2)=8 is 111. See Grantham and Graves. - Michel Marcus, Sep 11 2020

Examples

			a(1) = ((3 + 2*sqrt(2)) + (3 - 2*sqrt(2)) - 2) / 4 = (3 + 3 - 2) / 4 = 4 / 4 = 1;
a(2) = ((3 + 2*sqrt(2))^2 + (3 - 2*sqrt(2))^2 - 2) / 4 = (9 + 4*sqrt(2) + 8 + 9 - 4*sqrt(2) + 8 - 2) / 4 = (18 + 16 - 2) / 4 = (34 - 2) / 4 = 32 / 4 = 8, etc.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
  • M. S. Klamkin, "International Mathematical Olympiads 1978-1985," (Supplementary problem N.T.6)
  • W. Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, pp. 21-22 MR2002669
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.

Crossrefs

Partial sums of A002315. A000129, A005319.
a(n) = A115598(n), n > 0. - Hermann Stamm-Wilbrandt, Jul 27 2014

Programs

  • Haskell
    a001108 n = a001108_list !! n
    a001108_list = 0 : 1 : map (+ 2)
       (zipWith (-) (map (* 6) (tail a001108_list)) a001108_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Maple
    A001108:=-(1+z)/(z-1)/(z**2-6*z+1); # Simon Plouffe in his 1992 dissertation, without the leading 0
  • Mathematica
    Table[(1/2)(-1 + Sqrt[1 + Expand[8(((3 + 2Sqrt[2])^n - (3 - 2Sqrt[2])^n)/(4Sqrt[2]))^2]]), {n, 0, 100}] (* Artur Jasinski, Dec 10 2006 *)
    Transpose[NestList[{#[[2]],#[[3]],6#[[3]]-#[[2]]+2}&,{0,1,8},20]][[1]] (* Harvey P. Dale, Sep 04 2011 *)
    LinearRecurrence[{7, -7, 1}, {0, 1, 8}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
  • PARI
    a(n)=(real((3+quadgen(32))^n)-1)/2
    
  • PARI
    a(n)=(subst(poltchebi(abs(n)),x,3)-1)/2
    
  • PARI
    a(n)=if(n<0,a(-n),(polsym(1-6*x+x^2,n)[n+1]-2)/4)
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1+x)/((1-x)*(1-6*x+x^2)))) \\ Altug Alkan, May 01 2018
    

Formula

a(0) = 0, a(n+1) = 3*a(n) + 1 + 2*sqrt(2*a(n)*(a(n)+1)). - Jim Nastos, Jun 18 2002
a(n) = floor( (1/4) * (3+2*sqrt(2))^n ). - Benoit Cloitre, Sep 04 2002
a(n) = A001653(k)*A001653(k+n) - A001652(k)*A001652(k+n) - A046090(k)*A046090(k+n). - Charlie Marion, Jul 01 2003
a(n) = A001652(n-1) + A001653(n-1) = A001653(n) - A046090(n) = (A001541(n)-1)/2 = a(-n). - Michael Somos, Mar 03 2004
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Antonio Alberto Olivares, Oct 23 2003
a(n) = Sum_{r=1..n} 2^(r-1)*binomial(2n, 2r). - Lekraj Beedassy, Aug 21 2004
If n > 1, then both A000203(n) and A000203(n+1) are odd numbers: n is either a square or twice a square. - Labos Elemer, Aug 23 2004
a(n) = (T(n, 3)-1)/2 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n). - Wolfdieter Lang, Oct 18 2004
G.f.: x*(1+x)/((1-x)*(1-6*x+x^2)). Binet form: a(n) = ((3+2*sqrt(2))^n + (3-2*sqrt(2))^n - 2)/4. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
a(n) = floor(sqrt(2*A001110(n))) = floor(A001109(n)*sqrt(2)) = 2*(A000129(n)^2) - (n mod 2) = A001333(n)^2 - 1 + (n mod 2). - Henry Bottomley, Apr 19 2000, corrected by Eric Rowland, Jun 23 2017
A072221(n) = 3*a(n) + 1. - David Scheers, Dec 25 2006
A028982(a(n)) + 1 = A028982(a(n) + 1). - Juri-Stepan Gerasimov, Mar 28 2011
a(n+1)^2 + a(n)^2 + 1 = 6*a(n+1)*a(n) + 2*a(n+1) + 2*a(n). - Charlie Marion, Sep 28 2011
a(n) = 2*A001653(m)*A053141(n-m-1) + A002315(m)*A046090(n-m-1) + a(m) with m < n; otherwise, a(n) = 2*A001653(m)*A053141(m-n) - A002315(m)*A001652(m-n) + a(m). See Link to Generalized Proof re Square Triangular Numbers. - Kenneth J Ramsey, Oct 13 2011
a(n) = A048739(2n-2), n > 0. - Richard R. Forberg, Aug 31 2013
From Peter Bala, Jan 28 2014: (Start)
A divisibility sequence: that is, a(n) divides a(n*m) for all n and m. Case P1 = 8, P2 = 12, Q = 1 of the 3-parameter family of linear divisibility sequences found by Williams and Guy.
a(2*n+1) = A002315(n)^2 = Sum_{k = 0..4*n + 1} Pell(n), where Pell(n) = A000129(n).
a(2*n) = (1/2)*A005319(n)^2 = 8*A001109(n)^2.
(2,1) entry of the 2 X 2 matrix T(n,M), where M = [0, -3; 1, 4] and T(n,x) is the Chebyshev polynomial of the first kind. (End)
E.g.f.: exp(x)*(exp(2*x)*cosh(2*sqrt(2)*x) - 1)/2. - Stefano Spezia, Oct 25 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 19 2000
More terms from Lekraj Beedassy, Aug 21 2004

A123724 Partial sums of (-1)^floor(n*2^(1/3)).

Original entry on oeis.org

-1, 0, -1, -2, -1, -2, -1, 0, -1, 0, -1, -2, -1, -2, -1, 0, -1, 0, -1, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0
Offset: 1

Views

Author

T. D. Noe, Oct 11 2006

Keywords

Comments

Remarkably, these partial sums appear to have several periods of length 153008. This sum is not discussed by O'Bryant et al.

Crossrefs

Cf. A123737 (sum for sqrt(2)), A123738 (sum for Pi), A123739 (sum for e).

Programs

  • Mathematica
    Rest[FoldList[Plus,0,(-1)^Floor[2^(1/3)*Range[120]]]]
    Accumulate[(-1)^Floor[Range[100]Surd[2,3]]] (* Harvey P. Dale, Apr 16 2015 *)

A123738 Partial sums of (-1)^floor(n*Pi).

Original entry on oeis.org

-1, 0, -1, 0, -1, 0, -1, -2, -1, -2, -1, -2, -1, -2, -3, -2, -3, -2, -3, -2, -3, -4, -3, -4, -3, -4, -3, -4, -5, -4, -5, -4, -5, -4, -5, -6, -5, -6, -5, -6, -5, -6, -7, -6, -7, -6, -7, -6, -7, -8, -7, -8, -7, -8, -7, -8, -9, -8, -9, -8, -9, -8, -9, -10, -9, -10, -9, -10, -9, -10, -11, -10, -11, -10, -11, -10, -11, -12, -11, -12
Offset: 1

Views

Author

T. D. Noe, Oct 11 2006

Keywords

Crossrefs

Cf. A123724 (sum for 2^(1/3)), A123737 (sum for sqrt(2)), A123739 (sum for e).

Programs

  • Magma
    R:= RealField(20); [&+[(-1)^Floor(j*Pi(R)): j in [1..n]]: n in [1..130]]; // G. C. Greubel, Sep 05 2019
    
  • Mathematica
    Rest[FoldList[Plus,0,(-1)^Floor[Pi*Range[120]]]]
  • PARI
    vector(130, n, sum(j=1,n, (-1)^(j\(1/Pi))) ) \\ G. C. Greubel, Sep 05 2019
    
  • Sage
    [sum((-1)^floor(j*pi) for j in (1..n)) for n in (1..130)] # G. C. Greubel, Sep 05 2019

A123739 Partial sums of (-1)^floor(n*e).

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1
Offset: 1

Views

Author

T. D. Noe, Oct 11 2006

Keywords

Crossrefs

Cf. A123724 (sum for 2^(1/3)), A123737 (sum for sqrt(2)), A123738 (sum for pi).

Programs

  • Magma
    [&+[(-1)^Floor(j*Exp(1)): j in [1..n]]: n in [1..130]]; // G. C. Greubel, Sep 05 2019
    
  • Mathematica
    Rest[FoldList[Plus,0,(-1)^Floor[E*Range[120]]]]
    Accumulate[(-1)^Floor[E Range[200]]] (* Harvey P. Dale, May 06 2022 *)
  • PARI
    vector(50, n, sum(j=1,n, (-1)^(j\exp(-1))) ) \\ G. C. Greubel, Sep 05 2019
    
  • Sage
    [sum((-1)^floor(j*exp(1)) for j in (1..n)) for n in (1..130)] # G. C. Greubel, Sep 05 2019
Showing 1-6 of 6 results.