cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123851 A cubic recurrence: a(0) = 1, a(n) = n*a(n-1)^3 for n >= 1.

Original entry on oeis.org

1, 1, 2, 24, 55296, 845378412871680, 3624972460853492659595005581182702601633792000
Offset: 0

Views

Author

Keywords

Comments

A cubic analog of Somos's quadratic recurrence sequence A052129.
Terms a(7) onward are too big to include in data section. - G. C. Greubel, Aug 10 2019

Examples

			a(3) = 3*a(2)^3 = 3*(2*a(1)^3)^3 = 3*(2*(1*a(0)^3)^3)^3 = 3*(2*(1*1^3)^3)^3 = 3*(2*1)^3 = 3*8 = 24.
G.f. = 1 + x + 2*x^2 + 24*x^3 + 55296*x^4 + 845378412871680*x^5 + ...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Programs

  • GAP
    List([0..8], n-> Product([0..n-1], k-> (n-k)^(3^k)) ); # G. C. Greubel, Aug 10 2019
  • Magma
    [n eq 0 select 1 else (&*[(n-k)^(3^k): k in [0..n-1]]):n in [0..8]]; // G. C. Greubel, Aug 10 2019
    
  • Mathematica
    a[n_]:= If[n==0, 1, n*a[n-1]^3]; Table[a[n], {n,0,7}]
    nxt[{n_,a_}]:={n+1, (n+1)a^3}; NestList[nxt,{0,1},7][[All,2]] (* Harvey P. Dale, May 25 2019 *)
  • PARI
    {a(n) = if( n<1, n==0, prod(k=0, n-1, (n - k)^3^k))}; /* Michael Somos, Aug 07 2016 */
    
  • Sage
    [1]+[prod((n-k)^(3^k) for k in (0..n-1)) for n in (1..8)] # G. C. Greubel, Aug 10 2019
    

Formula

a(n) ~ c^(3^n)*n^(-1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.

Extensions

Corrected by Harvey P. Dale, May 25 2019