A123867 a(n) = n^10 - 1.
0, 1023, 59048, 1048575, 9765624, 60466175, 282475248, 1073741823, 3486784400, 9999999999, 25937424600, 61917364223, 137858491848, 289254654975, 576650390624, 1099511627775, 2015993900448, 3570467226623, 6131066257800, 10239999999999, 16679880978200
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Programs
-
GAP
List([1..25], n-> n^10 -1); # G. C. Greubel, Aug 08 2019
-
Magma
[n^10 - 1:n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
-
Maple
A123867:=n->n^10-1; seq(A123867(n), n=1..40); # Wesley Ivan Hurt, Jan 22 2014
-
Mathematica
Table[n^10-1, {n,40}] (* Wesley Ivan Hurt, Jan 22 2014 *)
-
PARI
vector(25, n, n^10 -1) \\ G. C. Greubel, Aug 08 2019
-
Sage
[n^10 -1 for n in (1..25)] # G. C. Greubel, Aug 08 2019
Formula
From G. C. Greubel, Aug 08 2019: (Start)
G.f.: x^2*(1023 + 47795*x + 455312*x^2 + 1310144*x^3 + 1310606*x^4 + 454982*x^5 + 47960*x^6 + 968*x^7 + 11*x^8 + x^9)/(1-x)^11.
E.g.f.: 1 +(-1 + x + 511*x^2 + 9330*x^3 + 34105*x^4 + 42525*x^5 + 22827*x^6 + 5880*x^7 + 750*x^8 + 45*x^9 + x^10)*exp(x). (End)
Comments