cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123903 Total number of "Emperors" in all tournaments on n labeled nodes.

Original entry on oeis.org

0, 1, 2, 6, 32, 320, 6144, 229376, 16777216, 2415919104, 687194767360, 387028092977152, 432345564227567616, 959230691832896684032, 4231240368651202111471616, 37138201178561408246973726720, 649037107316853453566312041152512, 22596875928343569839364720024765857792
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2006

Keywords

Comments

An "Emperor" is a player who beats everybody else.
a(n) is the number of isolated nodes in all simple labeled graphs on n nodes. - Geoffrey Critzer, Oct 19 2011

Crossrefs

Programs

  • GAP
    List([0..20], n-> n*2^Binomial(n-1,2)); # G. C. Greubel, Aug 06 2019
  • Magma
    [n*2^Binomial(n-1,2): n in [0..20]]; // G. C. Greubel, Aug 06 2019
    
  • Maple
    a:= n-> n*2^((n-1)*(n-2)/2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    a=Sum[2^Binomial[n,2]x^n/n!,{n,0,20}];
    Range[0,20]!CoefficientList[Series[x a,{x,0,20}],x]
    Table[n*2^Binomial[n-1,2], {n,0,20}] (* G. C. Greubel, Aug 06 2019 *)
  • Maxima
    A123903(n):=n*2^((n-1)*(n-2)/2)$ makelist(A123903(n),n,0,17); /* Martin Ettl, Nov 13 2012 */
    
  • PARI
    vector(20, n, n--; n*2^binomial(n-1,2)) \\ G. C. Greubel, Aug 06 2019
    
  • Sage
    [n*2^binomial(n-1,2) for n in (0..20)] # G. C. Greubel, Aug 06 2019
    

Formula

a(n) = n*2^((n-1)*(n-2)/2).
E.g.f.: x * Sum_{n>=0} 2^C(n,2) x^n/n!. - Geoffrey Critzer, Oct 19 2011
a(n) = n * A006125(n-1). - Anton Zakharov, Dec 21 2016