A125031
Total number of highest scorers in all 2^(n(n-1)/2) tournaments with n players.
Original entry on oeis.org
1, 2, 12, 104, 1560, 53184, 3422384, 430790144, 111823251840, 56741417927680, 57729973360342272, 118195918779085344768, 479770203506298422135808, 3914602958361039682677710848, 63809077054456699374663196416000, 2076906726499655025703507210668998656
Offset: 1
With 4 players there are 32 tournaments with 1 highest scorer, 24 tournaments with 2 highest scorers and 8 tournaments with 3 highest scorers. Therefore a(4)=32*1+24*2+8*3=104.
-
\\ Requires Winners from A013976.
a(n)={my(M=Winners(n)); sum(i=1, matsize(M)[1], pollead(M[i, 1])*M[i, 2])} \\ Andrew Howroyd, Feb 29 2020
A123553
A "king chicken" in a tournament graph (a directed labeled graph on n nodes with a single arc between every pair of nodes) is a player A who for any other player B either beats B directly or beats someone who beats B. Sequence gives total number of king chickens in all 2^(n(n-1)/2) tournaments.
Original entry on oeis.org
1, 2, 12, 128, 2680, 109824, 8791552, 1376518144, 422360211456, 254460936847360, 301592785058791424, 704473043710859280384, 3248469673423387574140928, 29616255381502146777580568576, 534589619577015738514639410954240, 19128875195554152154920492396852543488
Offset: 1
For n = 3 there are 8 tournaments: six of the form A beats B and C and B beats C, with one king chicken (A) and two of the form A beats B beats C beats A, with three king chickens each (A or B or C), for a total of 6*1 + 2*3 = 12.
-
a(n)=n*sum(k=0,n-1,binomial(n-1,k)*2^(binomial(k,2)+binomial(n-1-k,2))*(2^k-1)^(n-1-k)) \\ Christian Sievers, Nov 01 2023
A223894
Triangular array read by rows: T(n,k) is the number of connected components with size k summed over all simple labeled graphs on n nodes; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 2, 1, 6, 3, 4, 32, 12, 16, 38, 320, 80, 80, 190, 728, 6144, 960, 640, 1140, 4368, 26704, 229376, 21504, 8960, 10640, 30576, 186928, 1866256, 16777216, 917504, 229376, 170240, 326144, 1495424, 14930048, 251548592, 2415919104, 75497472, 11010048, 4902912, 5870592, 17945088, 134370432, 2263937328, 66296291072
Offset: 1
Triangle T(n,k) begins:
1;
2, 1;
6, 3, 4;
32, 12, 16, 38;
320, 80, 80, 190, 728;
6144, 960, 640, 1140, 4368, 26704;
229376, 21504, 8960, 10640, 30576, 186928, 1866256;
...
-
function b(n) // b = A001187
if n eq 0 then return 1;
else return 2^Binomial(n,2) - (&+[Binomial(n-1,j-1)*2^Binomial(n-j,2)*b(j): j in [0..n-1]]);
end if; return b;
end function;
A223894:= func< n,k | Binomial(n,k)*2^Binomial(n-k,2)*b(k) >;
[A223894(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2022
-
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
T:= (n, k)-> binomial(n, k)*b(k)*2^((n-k)*(n-k-1)/2):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 26 2013
-
nn = 9; f[list_] := Select[list, # > 0 &]; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = Drop[Range[0, nn]! CoefficientList[Series[Log[g] + 1, {x, 0, nn}], x], 1]; Map[f, Drop[Transpose[Table[Range[0, nn]! CoefficientList[Series[a[[n]] x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1]] // Grid
-
@CachedFunction
def b(n): # b = A001187
if (n==0): return 1
else: return 2^binomial(n,2) - sum(binomial(n-1,j-1)*2^binomial(n-j,2)*b(j) for j in range(n))
def A223894(n,k): return binomial(n,k)*2^binomial(n-k,2)*b(k)
flatten([[A223894(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 03 2022
A217652
Number of isolated nodes over all labeled directed graphs on n nodes.
Original entry on oeis.org
0, 1, 2, 12, 256, 20480, 6291456, 7516192768, 35184372088832, 648518346341351424, 47223664828696452136960, 13617340432139183023890366464, 15576890575604482885591488987660288, 70778732319555200400381918345807787982848
Offset: 0
-
a:= n-> 2^(n^2-3*n+2)*n:
seq (a(n), n=0..15); # Alois P. Heinz, Oct 09 2012
-
nn=15; s=Sum[2^(n^2-n)x^n/n!,{n,0,nn}]; Range[0,nn]! CoefficientList[Series[x s, {x,0,nn}], x]
-
A217652(n):=2^(n^2-3*n+2)*n$ makelist(A217652(n),n,0,10); /* Martin Ettl, Nov 13 2012 */
A219116
Number of semicomplete digraphs on n nodes with an "Emperor".
Original entry on oeis.org
0, 1, 2, 9, 108, 3645, 354294, 100442349, 83682825624, 205891132094649, 1500946352969991210, 32497439772059170685073, 2093390532109442148854046084, 401741006974223960704968343445877, 229924845755649214047240549209929574046
Offset: 0
A228315
Triangular array read by rows: T(n,k) is the number of rooted labeled simple graphs on {1,2,...,n} such that the root is in a component of size k; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 2, 2, 6, 6, 12, 32, 24, 48, 152, 320, 160, 240, 760, 3640, 6144, 1920, 1920, 4560, 21840, 160224, 229376, 43008, 26880, 42560, 152880, 1121568, 13063792, 16777216, 1835008, 688128, 680960, 1630720, 8972544, 104510336, 2012388736
Offset: 1
1;
2, 2;
6, 6, 12;
32, 24, 48, 152;
320, 160, 240, 760, 3640;
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 7.
-
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
T:= (n, k)-> binomial(n, k)*k*b(k)*2^((n-k)*(n-k-1)/2):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 26 2013
-
nn = 10; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a =
Drop[Range[0, nn]! CoefficientList[Series[Log[g], {x, 0, nn}], x],
1]; Table[
Table[Binomial[n, k] k a[[k]] 2^Binomial[n - k, 2], {k, 1, n}], {n,
1, 7}] // Grid
A245235
Repeat 2^(n*(n+1)/2) n+1 times.
Original entry on oeis.org
1, 2, 2, 8, 8, 8, 64, 64, 64, 64, 1024, 1024, 1024, 1024, 1024, 32768, 32768, 32768, 32768, 32768, 32768, 2097152, 2097152, 2097152, 2097152, 2097152, 2097152, 2097152, 268435456, 268435456, 268435456, 268435456, 268435456, 268435456, 268435456, 268435456
Offset: 0
n+1 times repeated 2^(n*(n+1)/2)= 1, 2, 8, 64, 1024,... = A139685(n).
By the formula: a(0)=1/1=1, a(1)=2/1=2, a(2)=4/2=2, a(3)=8/1=8, a(4)=16/2=8,...
As triangle:
1,
2, 2,
8, 8, 8,
64, 64, 64, 64,
1024, 1024, 1024, 1024, 1024,
etc.
Row sums: 1, 4, 24, 256,... = A095340.
-
Table[2^(n*(n+1)/2), {n, 0, 7}, {n+1}] // Flatten (* Jean-François Alcover, Jul 15 2014 *)
-
from math import isqrt
def A245235(n): return 1<<((m:=isqrt(n+1<<3)-1>>1)*(m+1)>>1) # Chai Wah Wu, Dec 17 2024
A360603
Triangle read by rows. T(n, k) = A360604(n, k) * A001187(k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 4, 0, 8, 6, 12, 38, 0, 64, 32, 48, 152, 728, 0, 1024, 320, 320, 760, 3640, 26704, 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256, 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 4;
[4] 0, 8, 6, 12, 38;
[5] 0, 64, 32, 48, 152, 728;
[6] 0, 1024, 320, 320, 760, 3640, 26704;
[7] 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256;
[8] 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
Cf.
A006125 Graphs on n labeled nodes, T(n+1, 1) and Sum_{k=0..n} T(n, k).
Cf.
A054592 Disconnected labeled graphs with n nodes, Sum_{k=0..n-1} T(n, k).
Cf.
A001187 Connected labeled graphs with n nodes, T(n, n).
Cf.
A123903 Isolated nodes in all simple labeled graphs on n nodes, T(n+2, 2).
Cf.
A053549 Labeled rooted connected graphs, T(n+1, n).
Cf.
A275462 Leaves in all simple labeled connected graphs on n nodes T(n+2, n).
Cf.
A060818 gcd_{k=0..n} T(n, k) = gcd(n!, 2^n).
Cf.
A143543 Labeled graphs on n nodes with k connected components.
Cf.
A095340 Total number of nodes in all labeled graphs on n nodes.
-
T := (n, k) -> 2^binomial(n-k, 2)*binomial(n-1, k-1)*A001187(k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Based on the recursion:
Trow := proc(n) option remember; if n = 0 then return [1] fi;
seq(2^binomial(n-k, 2) * binomial(n-1, k-1) * Trow(k)[k+1], k = 1..n-1);
2^(n*(n-1)/2) - add(j, j = [%]); [0, %%, %] end:
seq(print(Trow(n)), n = 0..8);
-
A001187[n_] := A001187[n] = 2^((n - 1)*n/2) - Sum[Binomial[n - 1, k]*2^((k - n + 1)*(k - n + 2)/2)*A001187[k + 1], {k, 0, n - 2}];
T[n_, k_] := 2^Binomial[n - k, 2]*Binomial[n - 1, k - 1]*A001187[k];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 02 2023, after Peter Luschny in A001187 *)
-
from math import comb as binomial
from functools import cache
@cache
def A360603Row(n: int) -> list[int]:
if n == 0: return [1]
s = [2 ** (((k - n + 1) * (k - n)) // 2) * binomial(n - 1, k - 1) * A360603Row(k)[k] for k in range(1, n)]
b = 2 ** (((n - 1) * n) // 2) - sum(s)
return [0] + s + [b]
A285529
Triangle read by rows: T(n,k) is the number of nodes of degree k counted over all simple labeled graphs on n nodes, n>=1, 0<=k<=n-1.
Original entry on oeis.org
1, 2, 2, 6, 12, 6, 32, 96, 96, 32, 320, 1280, 1920, 1280, 320, 6144, 30720, 61440, 61440, 30720, 6144, 229376, 1376256, 3440640, 4587520, 3440640, 1376256, 229376, 16777216, 117440512, 352321536, 587202560, 587202560, 352321536, 117440512, 16777216
Offset: 1
1,
2, 2,
6, 12, 6,
32, 96, 96, 32,
320, 1280, 1920, 1280, 320,
...
-
nn = 9; Map[Select[#, # > 0 &] &,
Drop[Transpose[Table[A[z_] := Sum[Binomial[n, k] 2^Binomial[n, 2] z^n/n!, {n, 0, nn}];Range[0, nn]! CoefficientList[Series[z A[z], {z, 0, nn}], z], {k,0, nn - 1}]], 1]] // Grid
Showing 1-9 of 9 results.
Comments