cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A125031 Total number of highest scorers in all 2^(n(n-1)/2) tournaments with n players.

Original entry on oeis.org

1, 2, 12, 104, 1560, 53184, 3422384, 430790144, 111823251840, 56741417927680, 57729973360342272, 118195918779085344768, 479770203506298422135808, 3914602958361039682677710848, 63809077054456699374663196416000, 2076906726499655025703507210668998656
Offset: 1

Views

Author

Martin Fuller, Nov 16 2006

Keywords

Comments

All highest scorers are also king chickens, A123553.

Examples

			With 4 players there are 32 tournaments with 1 highest scorer, 24 tournaments with 2 highest scorers and 8 tournaments with 3 highest scorers. Therefore a(4)=32*1+24*2+8*3=104.
		

Crossrefs

Programs

  • PARI
    \\ Requires Winners from A013976.
    a(n)={my(M=Winners(n)); sum(i=1, matsize(M)[1], pollead(M[i, 1])*M[i, 2])} \\ Andrew Howroyd, Feb 29 2020

Extensions

a(5)-a(10) also computed by Gordon Royle, Nov 16 2006
Terms a(12) and beyond from Andrew Howroyd, Feb 28 2020

A123553 A "king chicken" in a tournament graph (a directed labeled graph on n nodes with a single arc between every pair of nodes) is a player A who for any other player B either beats B directly or beats someone who beats B. Sequence gives total number of king chickens in all 2^(n(n-1)/2) tournaments.

Original entry on oeis.org

1, 2, 12, 128, 2680, 109824, 8791552, 1376518144, 422360211456, 254460936847360, 301592785058791424, 704473043710859280384, 3248469673423387574140928, 29616255381502146777580568576, 534589619577015738514639410954240, 19128875195554152154920492396852543488
Offset: 1

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Comments

H. G. Landau showed in 1951 that there may be several king chickens in a tournament and that a player is a king chicken if he has the highest score. The converse is not true and there can be more king chickens than highest scorers. The smallest example has 4 players: A beats B and C, B beats C and D, C beats D, D beats A; D is a king chicken despite having fewer points than A and B. Maurer showed in 1980 that there is one king chicken if one player beats all others and otherwise there are at least three.

Examples

			For n = 3 there are 8 tournaments: six of the form A beats B and C and B beats C, with one king chicken (A) and two of the form A beats B beats C beats A, with three king chickens each (A or B or C), for a total of 6*1 + 2*3 = 12.
		

Crossrefs

Cf. A006125, A013976, A125032, A125031 (highest scorers), A123903 (Emperors).

Programs

  • PARI
    a(n)=n*sum(k=0,n-1,binomial(n-1,k)*2^(binomial(k,2)+binomial(n-1-k,2))*(2^k-1)^(n-1-k)) \\ Christian Sievers, Nov 01 2023

Formula

a(n) >= A006125(n)*3 - A006125(n-1)*n*2 with equality for n<=4.
a(n) = n * Sum_{k=0..n-1} C(n-1,k) * 2^(C(k,2)+C(n-1-k,2)) * (2^k-1)^(n-1-k) where C(n,k) is the binomial coefficient. - Christian Sievers, Nov 01 2023

Extensions

Corrected and edited by Martin Fuller, Nov 16 2006
a(7) and beyond from Christian Sievers, Nov 01 2023

A223894 Triangular array read by rows: T(n,k) is the number of connected components with size k summed over all simple labeled graphs on n nodes; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 6, 3, 4, 32, 12, 16, 38, 320, 80, 80, 190, 728, 6144, 960, 640, 1140, 4368, 26704, 229376, 21504, 8960, 10640, 30576, 186928, 1866256, 16777216, 917504, 229376, 170240, 326144, 1495424, 14930048, 251548592, 2415919104, 75497472, 11010048, 4902912, 5870592, 17945088, 134370432, 2263937328, 66296291072
Offset: 1

Views

Author

Geoffrey Critzer, Mar 28 2013

Keywords

Examples

			Triangle T(n,k) begins:
       1;
       2,     1;
       6,     3,    4;
      32,    12,   16,    38;
     320,    80,   80,   190,   728;
    6144,   960,  640,  1140,  4368,  26704;
  229376, 21504, 8960, 10640, 30576, 186928, 1866256;
  ...
		

Crossrefs

Cf. A001187, A006125, A123903 (column 1), A125207 (row sums), A182166 (column 2).

Programs

  • Magma
    function b(n) // b = A001187
      if n eq 0 then return 1;
      else return 2^Binomial(n,2) - (&+[Binomial(n-1,j-1)*2^Binomial(n-j,2)*b(j): j in [0..n-1]]);
      end if; return b;
    end function;
    A223894:= func< n,k | Binomial(n,k)*2^Binomial(n-k,2)*b(k) >;
    [A223894(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2022
    
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    T:= (n, k)-> binomial(n, k)*b(k)*2^((n-k)*(n-k-1)/2):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    nn = 9; f[list_] := Select[list, # > 0 &]; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = Drop[Range[0, nn]! CoefficientList[Series[Log[g] + 1, {x, 0, nn}], x], 1]; Map[f, Drop[Transpose[Table[Range[0, nn]! CoefficientList[Series[a[[n]] x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1]] // Grid
  • SageMath
    @CachedFunction
    def b(n): # b = A001187
        if (n==0): return 1
        else: return 2^binomial(n,2) - sum(binomial(n-1,j-1)*2^binomial(n-j,2)*b(j) for j in range(n))
    def A223894(n,k): return binomial(n,k)*2^binomial(n-k,2)*b(k)
    flatten([[A223894(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 03 2022

Formula

E.g.f. for column k: A001187(n)*x^n/n!*A(x) where A(x) is the e.g.f. for A006125.
Sum_{k=0..n} T(n, k) = A125207(n).
T(n, 1) = A123903(n).
T(n, 2) = A182166(n).
T(n, n) = A001187(n). - G. C. Greubel, Oct 03 2022

A217652 Number of isolated nodes over all labeled directed graphs on n nodes.

Original entry on oeis.org

0, 1, 2, 12, 256, 20480, 6291456, 7516192768, 35184372088832, 648518346341351424, 47223664828696452136960, 13617340432139183023890366464, 15576890575604482885591488987660288, 70778732319555200400381918345807787982848
Offset: 0

Views

Author

Geoffrey Critzer, Oct 09 2012

Keywords

Comments

a(n) = Sum_{k=1..n} A217580(n,k) * k.
a(n) is also the number of labeled directed graphs on n nodes with an "Emperor". - Rémy-Robert Joseph, Nov 12 2012

Crossrefs

See also A123903 (case of tournaments) and A219116 (case of semicomplete digraphs) Rémy-Robert Joseph, Nov 12 2012

Programs

  • Maple
    a:= n-> 2^(n^2-3*n+2)*n:
    seq (a(n), n=0..15);  # Alois P. Heinz, Oct 09 2012
  • Mathematica
    nn=15; s=Sum[2^(n^2-n)x^n/n!,{n,0,nn}]; Range[0,nn]! CoefficientList[Series[x s, {x,0,nn}], x]
  • Maxima
    A217652(n):=2^(n^2-3*n+2)*n$ makelist(A217652(n),n,0,10); /* Martin Ettl, Nov 13 2012 */

Formula

E.g.f.: x * A(x) where A(x) is the e.g.f. for A053763.
a(n) = 2^(n^2-3*n+2)*n. - Alois P. Heinz, Oct 09 2012

A219116 Number of semicomplete digraphs on n nodes with an "Emperor".

Original entry on oeis.org

0, 1, 2, 9, 108, 3645, 354294, 100442349, 83682825624, 205891132094649, 1500946352969991210, 32497439772059170685073, 2093390532109442148854046084, 401741006974223960704968343445877, 229924845755649214047240549209929574046
Offset: 0

Views

Author

Rémy-Robert Joseph, Nov 12 2012

Keywords

Comments

a(n) is also the number of asymmetric digraphs on n nodes with an "Emperor".

Crossrefs

See also A123903 for tournaments and A217652 for digraphs.

Programs

Formula

a(n) = n*3^((n^2 - 3*n + 2)/2).

A228315 Triangular array read by rows: T(n,k) is the number of rooted labeled simple graphs on {1,2,...,n} such that the root is in a component of size k; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 2, 6, 6, 12, 32, 24, 48, 152, 320, 160, 240, 760, 3640, 6144, 1920, 1920, 4560, 21840, 160224, 229376, 43008, 26880, 42560, 152880, 1121568, 13063792, 16777216, 1835008, 688128, 680960, 1630720, 8972544, 104510336, 2012388736
Offset: 1

Views

Author

Geoffrey Critzer, Aug 26 2013

Keywords

Comments

Row sums = A095340.
Column 1 = A123903.
T(n,k) = A223894(n,k)*k.
Diagonal = A053549.

Examples

			1;
2,    2;
6,    6,    12;
32,   24,   48,    152;
320,  160,  240,   760,    3640;
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 7.

Crossrefs

Cf. A070166.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    T:= (n, k)-> binomial(n, k)*k*b(k)*2^((n-k)*(n-k-1)/2):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    nn = 10; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a =
    Drop[Range[0, nn]! CoefficientList[Series[Log[g], {x, 0, nn}], x],
      1]; Table[
      Table[Binomial[n, k] k a[[k]] 2^Binomial[n - k, 2], {k, 1, n}], {n,
       1, 7}] // Grid

Formula

T(n,k) = binomial(n,k)*k*A001187(k)*A006125(n-k).

A245235 Repeat 2^(n*(n+1)/2) n+1 times.

Original entry on oeis.org

1, 2, 2, 8, 8, 8, 64, 64, 64, 64, 1024, 1024, 1024, 1024, 1024, 32768, 32768, 32768, 32768, 32768, 32768, 2097152, 2097152, 2097152, 2097152, 2097152, 2097152, 2097152, 268435456, 268435456, 268435456, 268435456, 268435456, 268435456, 268435456, 268435456
Offset: 0

Views

Author

Paul Curtz, Jul 14 2014

Keywords

Comments

For a(n), the successive exponents of 2 are 0, 1, 1, 3, 3, 3,... = A057944(n).

Examples

			n+1 times repeated 2^(n*(n+1)/2)= 1, 2, 8, 64, 1024,... = A139685(n).
By the formula: a(0)=1/1=1, a(1)=2/1=2, a(2)=4/2=2, a(3)=8/1=8, a(4)=16/2=8,...
As triangle:
   1,
   2,    2,
   8,    8,    8,
  64,   64,   64,   64,
1024, 1024, 1024, 1024, 1024,
etc.
Row sums: 1, 4, 24, 256,... = A095340.
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n*(n+1)/2), {n, 0, 7}, {n+1}] // Flatten (* Jean-François Alcover, Jul 15 2014 *)
  • Python
    from math import isqrt
    def A245235(n): return 1<<((m:=isqrt(n+1<<3)-1>>1)*(m+1)>>1) # Chai Wah Wu, Dec 17 2024

Formula

a(n) = 2^n/A059268(n).
T(n, k) = 2^(n*(n+1)/2), 0 <= k <= n. - Michel Marcus, Jul 17 2014

A360603 Triangle read by rows. T(n, k) = A360604(n, k) * A001187(k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 4, 0, 8, 6, 12, 38, 0, 64, 32, 48, 152, 728, 0, 1024, 320, 320, 760, 3640, 26704, 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256, 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592
Offset: 0

Views

Author

Peter Luschny, Feb 20 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,       1;
[2] 0,       1,      1;
[3] 0,       2,      2,     4;
[4] 0,       8,      6,    12,    38;
[5] 0,      64,     32,    48,   152,    728;
[6] 0,    1024,    320,   320,   760,   3640,   26704;
[7] 0,   32768,   6144,  3840,  6080,  21840,  160224,  1866256;
[8] 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A006125 Graphs on n labeled nodes, T(n+1, 1) and Sum_{k=0..n} T(n, k).
Cf. A054592 Disconnected labeled graphs with n nodes, Sum_{k=0..n-1} T(n, k).
Cf. A001187 Connected labeled graphs with n nodes, T(n, n).
Cf. A123903 Isolated nodes in all simple labeled graphs on n nodes, T(n+2, 2).
Cf. A053549 Labeled rooted connected graphs, T(n+1, n).
Cf. A275462 Leaves in all simple labeled connected graphs on n nodes T(n+2, n).
Cf. A060818 gcd_{k=0..n} T(n, k) = gcd(n!, 2^n).
Cf. A143543 Labeled graphs on n nodes with k connected components.
Cf. A095340 Total number of nodes in all labeled graphs on n nodes.
Cf. A360604, A360860 (accumulation triangle).

Programs

  • Maple
    T := (n, k) -> 2^binomial(n-k, 2)*binomial(n-1, k-1)*A001187(k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Based on the recursion:
    Trow := proc(n) option remember; if n = 0 then return [1] fi;
    seq(2^binomial(n-k, 2) * binomial(n-1, k-1) * Trow(k)[k+1], k = 1..n-1);
    2^(n*(n-1)/2) - add(j, j = [%]); [0, %%, %] end:
    seq(print(Trow(n)), n = 0..8);
  • Mathematica
    A001187[n_] := A001187[n] = 2^((n - 1)*n/2) - Sum[Binomial[n - 1, k]*2^((k - n + 1)*(k - n + 2)/2)*A001187[k + 1], {k, 0, n - 2}];
    T[n_, k_] := 2^Binomial[n - k, 2]*Binomial[n - 1, k - 1]*A001187[k];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 02 2023, after Peter Luschny in A001187 *)
  • Python
    from math import comb as binomial
    from functools import cache
    @cache
    def A360603Row(n: int) -> list[int]:
        if n == 0: return [1]
        s = [2 ** (((k - n + 1) * (k - n)) // 2) * binomial(n - 1, k - 1) * A360603Row(k)[k] for k in range(1, n)]
        b = 2 ** (((n - 1) * n) // 2) - sum(s)
        return [0] + s + [b]

Formula

T(n, k) = 2^binomial(n-k, 2)*binomial(n-1, k-1) * A001187(k).
Recursion over the rows of the triangle: Set row(0) = [1] where [.] denotes a 0-based list. Assume now all rows(j) for j < n computed, next compute r = [2^binomial(n-k, 2) * binomial(n-1, k-1) * row(k)[k] for k = 1..n-1] and s = 2^(n*(n-1)/2) - Sum(r). Then row(n) = [0] & r & [s], where '&' denotes the concatenation of lists. (See the Python program for an implementation.)
T(n, n) = A001187(n) (connected labeled graphs).
T(n-1, n) = A053549(n-1) for n >= 1 (labeled rooted connected graphs).
T(n, 1) = Sum_{k>=0} T(n-1, k) = A006125(n-1) for n >= 1 (all labeled graphs).
Sum_{k=0..n-1} T(n, k) = A054592(n) for n >= 1 (disconnected labeled graphs).
See additional formulas in the cross-references.

A285529 Triangle read by rows: T(n,k) is the number of nodes of degree k counted over all simple labeled graphs on n nodes, n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 2, 2, 6, 12, 6, 32, 96, 96, 32, 320, 1280, 1920, 1280, 320, 6144, 30720, 61440, 61440, 30720, 6144, 229376, 1376256, 3440640, 4587520, 3440640, 1376256, 229376, 16777216, 117440512, 352321536, 587202560, 587202560, 352321536, 117440512, 16777216
Offset: 1

Views

Author

Geoffrey Critzer, Apr 20 2017

Keywords

Examples

			1,
2,   2,
6,   12,   6,
32,  96,   96,   32,
320, 1280, 1920, 1280, 320,
...
		

Crossrefs

Row sums give A095340.
Columns for k=0-3: A123903, A095338, A038094, A038096.

Programs

  • Mathematica
    nn = 9; Map[Select[#, # > 0 &] &,
      Drop[Transpose[Table[A[z_] := Sum[Binomial[n, k] 2^Binomial[n, 2] z^n/n!, {n, 0, nn}];Range[0, nn]! CoefficientList[Series[z A[z], {z, 0, nn}], z], {k,0, nn - 1}]], 1]] // Grid

Formula

E.g.f. for column k: x * Sum_{n>=0} binomial(n,k)*2^binomial(n,2)*x^n/n!.
Sum_{k=1..n-1} T(n,k)*k/2 = A095351(n).
T(n,k) = n*binomial(n-1,k)*2^binomial(n-1,2). - Alois P. Heinz, Apr 21 2017
Showing 1-9 of 9 results.