cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123941 The (1,2)-entry in the 3 X 3 matrix M^n, where M = {{2, 1, 1}, {1, 1, 0}, {1, 0, 0}}.

Original entry on oeis.org

0, 1, 3, 9, 26, 75, 216, 622, 1791, 5157, 14849, 42756, 123111, 354484, 1020696, 2938977, 8462447, 24366645, 70160958, 202020427, 581694636, 1674922950, 4822748423, 13886550633, 39984728949, 115131438424, 331507764639, 954538564968, 2748484256480
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 25 2006

Keywords

Comments

Essentially the same as A076264. - Tom Edgar, May 12 2015

References

  • Rosenblum and Rovnyak, Hardy Classes and Operator Theory, Dover, New York, 1985, page 26

Crossrefs

Programs

  • GAP
    a:=[0,1,3];; for n in [4..30] do a[n]:=3*a[n-1]-a[n-3]; od; a; # Muniru A Asiru, Oct 28 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x/(1-3*x+x^3) )); // G. C. Greubel, Aug 05 2019
    
  • Maple
    with(linalg): M[1]:=matrix(3,3,[2,1,1,1,1,0,1,0,0]): for n from 2 to 30 do M[n]:=multiply(M[1],M[n-1]) od: 0,seq(M[n][1,2], n=1..30);
    a[0]:=0: a[1]:=1: a[2]:=3: for n from 3 to 30 do a[n]:=3*a[n-1]-a[n-3] od: seq(a[n], n=0..30);
  • Mathematica
    M = {{2,1,1}, {1,1,0}, {1,0,0}}; v[1] = {0,0,1}; v[n_]:= v[n] =M.v[n-1];Table[v[n][[2]], {n, 30}]
    LinearRecurrence[{3,0,-1}, {0,1,3}, 30] (* G. C. Greubel, Aug 05 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/(1-3*x+x^3))) \\ G. C. Greubel, Aug 05 2019
    
  • Sage
    (x/(1-3*x+x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 05 2019

Formula

a(n) = 3*a(n-1) - a(n-3), a(0)=0, a(1)=1, a(2)=3 (follows from the minimal polynomial x^3-3x^2+1 of the matrix M).
a(n) = A076264(n-1). - R. J. Mathar, Jun 18 2008
G.f.: x/(1 - 3*x + x^3). - Arkadiusz Wesolowski, Oct 29 2012
a(n) = A018919(n-2) for n >= 2. - Georg Fischer, Oct 28 2018

Extensions

Edited by N. J. A. Sloane, Nov 07 2006