cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123970 Triangle read by rows: T(0,0)=1; T(n,k) is the coefficient of x^(n-k) in the monic characteristic polynomial of the n X n matrix (min(i,j)) (i,j=1,2,...,n) (0 <= k <= n, n >= 1).

Original entry on oeis.org

1, 1, -1, 1, -3, 1, 1, -6, 5, -1, 1, -10, 15, -7, 1, 1, -15, 35, -28, 9, -1, 1, -21, 70, -84, 45, -11, 1, 1, -28, 126, -210, 165, -66, 13, -1, 1, -36, 210, -462, 495, -286, 91, -15, 1, 1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 1, -66, 715, -3003, 6435, -8008
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 29 2006

Keywords

Comments

This sequence is the same as A129818 up to sign. - T. D. Noe, Sep 30 2011
Riordan array (1/(1-x), -x/(1-x)^2). - Philippe Deléham, Feb 18 2012

Examples

			Triangular sequence (gives the odd Tutte-Beraha constants as roots!) begins:
  1;
  1,  -1;
  1,  -3,   1;
  1,  -6,   5,   -1;
  1, -10,  15,   -7,    1;
  1, -15,  35,  -28,    9,    -1;
  1, -21,  70,  -84,   45,   -11,   1;
  1, -28, 126, -210,  165,   -66,  13,   -1;
  1, -36, 210, -462,  495,  -286,  91,  -15,  1;
  1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1;
  ...
		

References

  • S. Beraha, Infinite non-trivial families of maps and chromials, Ph.D. thesis. Baltimore, MD: Johns Hopkins University, 1975.
  • Steven R. Finch, Mathematical Constants (Encyclopedia of Mathematics and its Applications), chapter 5.25.
  • W. T. Tutte, "More about Chromatic Polynomials and the Golden Ratio." In Combinatorial Structures and their Applications: Proc. Calgary Internat. Conf., Calgary, Alberta, 1969. New York: Gordon and Breach, p. 439, 1969.

Crossrefs

Cf. A109954, A129818, A143858, A165253. - R. J. Mathar, Jan 10 2011
Modulo signs, inverse matrix to A039599.

Programs

  • Magma
    /* As triangle */ [[(-1)^k*Binomial(n + k, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 04 2019
  • Maple
    with(linalg): m:=(i,j)->min(i,j): M:=n->matrix(n,n,m): T:=(n,k)->coeff(charpoly(M(n),x),x,n-k): 1; for n from 1 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    An[d_] := MatrixPower[Table[Min[n, m], {n, 1, d}, {m, 1, d}], -1]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]

Formula

f(n,x) = (2x-1)f(n-1,x)-x^2*f(n-2,x), where f(n,x) is the characteristic polynomial of the n X n matrix from the definition and f(0,x)=1. See formula in Fendley and Krushkal. - Jonathan Vos Post, Nov 04 2007
T(n,k) = (-1)^k * A085478(n,k) = (-1)^n * A129818(n,k). - Philippe Deléham, Feb 06 2012
T(n,k) = 2*T(n-1,k) - T(n-1,k-1) - T(n-2,k), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 29 2013

Extensions

Edited by N. J. A. Sloane, Nov 29 2006