A123970 Triangle read by rows: T(0,0)=1; T(n,k) is the coefficient of x^(n-k) in the monic characteristic polynomial of the n X n matrix (min(i,j)) (i,j=1,2,...,n) (0 <= k <= n, n >= 1).
1, 1, -1, 1, -3, 1, 1, -6, 5, -1, 1, -10, 15, -7, 1, 1, -15, 35, -28, 9, -1, 1, -21, 70, -84, 45, -11, 1, 1, -28, 126, -210, 165, -66, 13, -1, 1, -36, 210, -462, 495, -286, 91, -15, 1, 1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 1, -66, 715, -3003, 6435, -8008
Offset: 0
Examples
Triangular sequence (gives the odd Tutte-Beraha constants as roots!) begins: 1; 1, -1; 1, -3, 1; 1, -6, 5, -1; 1, -10, 15, -7, 1; 1, -15, 35, -28, 9, -1; 1, -21, 70, -84, 45, -11, 1; 1, -28, 126, -210, 165, -66, 13, -1; 1, -36, 210, -462, 495, -286, 91, -15, 1; 1, -45, 330, -924, 1287, -1001, 455, -120, 17, -1; ...
References
- S. Beraha, Infinite non-trivial families of maps and chromials, Ph.D. thesis. Baltimore, MD: Johns Hopkins University, 1975.
- Steven R. Finch, Mathematical Constants (Encyclopedia of Mathematics and its Applications), chapter 5.25.
- W. T. Tutte, "More about Chromatic Polynomials and the Golden Ratio." In Combinatorial Structures and their Applications: Proc. Calgary Internat. Conf., Calgary, Alberta, 1969. New York: Gordon and Breach, p. 439, 1969.
Links
- Paul Fendley and Vyacheslav Krushkal, Tutte chromatic identities and the Temperley-Lieb algebra, arXiv:0711.0016 [math.CO], 2007-2008.
- Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174. See page 161.
- Eric Weisstein's World of Mathematics, Beraha Constants
Crossrefs
Programs
-
Magma
/* As triangle */ [[(-1)^k*Binomial(n + k, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 04 2019
-
Maple
with(linalg): m:=(i,j)->min(i,j): M:=n->matrix(n,n,m): T:=(n,k)->coeff(charpoly(M(n),x),x,n-k): 1; for n from 1 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
An[d_] := MatrixPower[Table[Min[n, m], {n, 1, d}, {m, 1, d}], -1]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]
Formula
f(n,x) = (2x-1)f(n-1,x)-x^2*f(n-2,x), where f(n,x) is the characteristic polynomial of the n X n matrix from the definition and f(0,x)=1. See formula in Fendley and Krushkal. - Jonathan Vos Post, Nov 04 2007
T(n,k) = 2*T(n-1,k) - T(n-1,k-1) - T(n-2,k), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 29 2013
Extensions
Edited by N. J. A. Sloane, Nov 29 2006
Comments