Original entry on oeis.org
3, 3, 3, 59, 11, 17, 29, 11, 71, 71, 23, 11, 29, 29, 11, 83, 3, 11, 281, 11, 101, 71, 23, 257, 401, 293, 107, 293, 53, 11, 113, 251, 47, 587, 23, 179, 389, 59, 173, 17, 1427, 83, 431, 53, 563, 593, 41, 47, 239, 383, 431, 1181, 701, 971, 149, 593, 569, 149, 191, 1973
Offset: 1
A124450
Lesser of a pair of not necessarily distinct closest primes that add up to 10^n.
Original entry on oeis.org
5, 47, 491, 4919, 49877, 499943, 4999913, 49999757, 499999931, 4999999937, 49999999811, 499999999769, 4999999998431, 49999999999619, 499999999999769, 4999999999998557, 49999999999998887, 499999999999999679, 4999999999999999661, 49999999999999998647
Offset: 1
10^1=5+5; 10^2=47+53; 10^3=491+509;
10^4=4919+5081; 10^5=49877=50123; 10^6=499943+500057;
10^7=4999913+5000087; 10^8=49999757+50000243;
10^9=499999931+500000069;
10^10=4999999937+5000000063; etc.
Cf.
A065577 (number of Goldbach partitions of 10^n).
-
Table[ h =10^n/2; c=0; While[ PrimeQ[ h-c ]==False || PrimeQ[ h+c ]==False, c++ ]; h-c, {n, 1, 50} ] (* Hans Havermann, Nov 02 2006 *)
A124049
a(n) = c is least number such that 10^n/2 -/+ c are primes.
Original entry on oeis.org
0, 3, 9, 81, 123, 57, 87, 243, 69, 63, 189, 231, 1569, 381, 231, 1443, 1113, 321, 339, 1353, 363, 519, 1323, 1503, 741, 1221, 957, 1053, 339, 5931, 2121, 2301, 2031, 4773, 4737, 10281, 1317, 129, 3873, 1443, 387, 11769, 8271, 5337, 2883, 7137, 8193, 8493
Offset: 1
Next terms up to n = 101: 14637, 9897,
6471, 183, 8043, 6921,6699, 29127, 3663, 12537, 3777,
6741, 2253, 561, 3783, 26979, 16491, 6543, 10683,
1749, 6417, 38871, 22767, 62403, 8631, 4497, 20739,
453, 16731, 25293, 4341, 37467,
55323,4587,37083,24717,6687,8763,22551,29367,37881,14301,8637,34101,22179,26811,7059,1647
-
lnc[n_]:=Module[{c=0,t=10^n/2},While[!AllTrue[t+{c,-c},PrimeQ],c++];c]; Array[ lnc,50] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 21 2014 *)
Showing 1-3 of 3 results.
Comments