cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A124013 Lesser of pair of most widely separated primes whose sum is 10^n.

Original entry on oeis.org

3, 3, 3, 59, 11, 17, 29, 11, 71, 71, 23, 11, 29, 29, 11, 83, 3, 11, 281, 11, 101, 71, 23, 257, 401, 293, 107, 293, 53, 11, 113, 251, 47, 587, 23, 179, 389, 59, 173, 17, 1427, 83, 431, 53, 563, 593, 41, 47, 239, 383, 431, 1181, 701, 971, 149, 593, 569, 149, 191, 1973
Offset: 1

Views

Author

Zak Seidov, Nov 02 2006

Keywords

Examples

			10^1 = 3 + 7, 10^2 = 3 + 97, 10^3 = 3 + 997, 10^4 = 59 + 9941, 10^5 = 11 + 99989, 10^6 = 17 + 999983, 10^7 = 29 + 9999971, 10^8 = 11 + 99999989, 10^9 = 71 + 999999929, 10^10 = 71 + 9999999929, etc.
		

Crossrefs

Cf. A065577 (Number of Goldbach partitions of 10^n), A124450 (Lesser of pair of closest primes summed to 10^n).

Programs

  • Mathematica
    Table[DeleteCases[Map[{#, 10^n - #} &, Prime@ Range@ PrimePi@ Floor[10^n/2]] /. {, k} /; ! PrimeQ@ k -> 0, 0][[1, 1]], {n, 8}] (* or *)
    Table[First@ SelectFirst[Map[{#, 10^n - #} &, Prime@ Range@ PrimePi@ Floor[10^n/2]], PrimeQ@ Last@ # &], {n, 9}] (* Version 10, Michael De Vlieger, Aug 01 2016 *)
    lp[n_]:=Module[{p=3,x=10^n},While[CompositeQ[x-p],p=NextPrime[p]];p]; Array[lp,60] (* Harvey P. Dale, Jun 11 2022 *)

Formula

10^n - a(n) is prime and 10^n - k is composite for 0 <= k < a(n). - corrected by David A. Corneth, Aug 18 2016

Extensions

a(1) corrected and a(2) inserted by Gionata Neri, Aug 01 2016

A124049 a(n) = c is least number such that 10^n/2 -/+ c are primes.

Original entry on oeis.org

0, 3, 9, 81, 123, 57, 87, 243, 69, 63, 189, 231, 1569, 381, 231, 1443, 1113, 321, 339, 1353, 363, 519, 1323, 1503, 741, 1221, 957, 1053, 339, 5931, 2121, 2301, 2031, 4773, 4737, 10281, 1317, 129, 3873, 1443, 387, 11769, 8271, 5337, 2883, 7137, 8193, 8493
Offset: 1

Views

Author

Hans Havermann and Zak Seidov, Nov 03 2006

Keywords

Comments

Related to Goldbach pairs of 10^n: a(n)=10^n/2 -A124450(n) Lesser of pair of closest primes whose sum is 10^n. Cf. A124013 Lesser of pair of most widely separated primes whose sum is 10^n, A065577 Number of Goldbach partitions of 10^n
All terms are divisible by 3 - see A108163.

Examples

			Next terms up to n = 101: 14637, 9897,
6471, 183, 8043, 6921,6699, 29127, 3663, 12537, 3777,
6741, 2253, 561, 3783, 26979, 16491, 6543, 10683,
1749, 6417, 38871, 22767, 62403, 8631, 4497, 20739,
453, 16731, 25293, 4341, 37467,
55323,4587,37083,24717,6687,8763,22551,29367,37881,14301,8637,34101,22179,26811,7059,1647
		

Crossrefs

Programs

  • Mathematica
    lnc[n_]:=Module[{c=0,t=10^n/2},While[!AllTrue[t+{c,-c},PrimeQ],c++];c]; Array[ lnc,50] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 21 2014 *)

A137611 Lesser of a pair of distinct closest n-digit primes that add up to 10^n.

Original entry on oeis.org

3, 47, 491, 4919, 49877, 499943, 4999913, 49999757, 499999931, 4999999937, 49999999811, 499999999769, 4999999998431, 49999999999619, 499999999999769, 4999999999998557, 49999999999998887, 499999999999999679
Offset: 1

Views

Author

Lekraj Beedassy, Jan 29 2008

Keywords

Crossrefs

Apart from initial term, same as A124450.

Extensions

Edited by N. J. A. Sloane May 15 2008 at the suggestion of R. J. Mathar.
A-number in cross-reference corrected by R. J. Mathar, Jul 17 2009

A135057 Largest semiprime whose prime factors add up to 10^n.

Original entry on oeis.org

25, 2491, 249919, 24993439, 2499984871, 249999996751, 24999999992431, 2499999999940951, 249999999999995239, 24999999999999996031, 2499999999999999964279, 249999999999999999946639, 24999999999999999997538239, 2499999999999999999999854839, 249999999999999999999999946639
Offset: 1

Views

Author

Lekraj Beedassy, Feb 11 2008

Keywords

Programs

  • Mathematica
    s={};f[{p_,e_}]:=e*p;Do[a=(10^n/2)^2;While[PrimeOmega[a]!=2||Total[f/@FactorInteger[a]]!=10^n,a=a-1];AppendTo[s,a],{n,11}];s (* James C. McMahon, Apr 13 2025 *)

Formula

a(n) = A124450(n)*(10^n - A124550(n)) {= A137611(n)*A137612(n) for n>1}.
a(n) = 100^n/4-(A124049(n))^2. - Zak Seidov, Feb 15 2008
Showing 1-4 of 4 results.