cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055039 Numbers of the form 2^(2i+1)*(8j+7).

Original entry on oeis.org

14, 30, 46, 56, 62, 78, 94, 110, 120, 126, 142, 158, 174, 184, 190, 206, 222, 224, 238, 248, 254, 270, 286, 302, 312, 318, 334, 350, 366, 376, 382, 398, 414, 430, 440, 446, 462, 478, 480, 494, 504, 510, 526, 542, 558, 568, 574, 590, 606, 622
Offset: 1

Views

Author

N. J. A. Sloane, Jun 01 2000

Keywords

Comments

The numbers not of the form x^2+y^2+2z^2.
Numbers of the form 6*x^2 + 8*x^2*(2*y -1). (Steve Waterman).
These are the numbers not occurring as norms in the face-centered cubic lattice (cf. A004015).
Numbers whose base 4 representation ends in 3,2 followed by some number of zeros. - Franklin T. Adams-Watters, Dec 04 2006
Numbers k such that the k-th coefficient of eta(x)^4/eta(x^4) is 0 where eta is the Dedekind eta function. - Benoit Cloitre, Mar 15 2025
The asymptotic density of this sequence is 1/12. - Amiram Eldar, Mar 29 2025

Examples

			In base 4: 32, 132, 232, 320, 332, 1032, 1132, 1232, 1320, 1332, 2032, ...
		

Crossrefs

Equals twice A004215. Not the same as A044075 - see A124169.
Complement of A000401.
Cf. A004015.

Programs

  • Mathematica
    Select[Range[650], Mod[# / 4^IntegerExponent[#, 4], 16] == 14 &] (* Amiram Eldar, Mar 29 2025 *)
  • Python
    from itertools import count, islice
    def A055039_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(m:=(~n&n-1).bit_length())&1 and (n>>m)&7==7,count(max(startvalue,1)))
    A055039_list = list(islice(A055039_gen(),30)) # Chai Wah Wu, Jul 09 2022
    
  • Python
    def A055039(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x>>i)-7>>3)+1 for i in range(1,x.bit_length(),2))
        return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025

A044075 Numbers k such that the string 3,2 occurs in the base-4 representation of k but not of k-1.

Original entry on oeis.org

14, 30, 46, 56, 62, 78, 94, 110, 120, 126, 142, 158, 174, 184, 190, 206, 222, 224, 248, 254, 270, 286, 302, 312, 318, 334, 350, 366, 376, 382, 398, 414, 430, 440, 446, 462, 478, 480, 504, 510, 526, 542, 558, 568, 574, 590, 606
Offset: 1

Views

Author

Keywords

Comments

Numbers whose base-4 representation ends in 3,2 followed by some number of zeros and includes no other 3,2. - Franklin T. Adams-Watters, Dec 04 2006
Not the same as A055039 - see A124169.
A 4-automatic set: membership is determined by comparing the base-4 representation of the number to the regular expression /[012]*(3+([01][012]*)?)*320*/. - Charles R Greathouse IV, Feb 11 2012 [corrected by Pontus von Brömssen, Jan 12 2019]
Alternatively, numbers whose base-4 representation is in the language generated by the regular expression /([012]|3*[01])*3+20*/. - Pontus von Brömssen, Jan 17 2019

Programs

  • Maple
    has32 := proc(n) local shft : shft := n : while shft > 0 do if shft mod 16 = 14 then RETURN(true) ; fi : shft := floor(shft/4) : od : RETURN(false) ; end: isA044075 := proc(n) if has32(n) and not has32(n-1) then return(true): else return(false) : fi : end: n := 1 : a := 1 : while n <= 10000 do while not isA044075(a) do a := a+1 : od : printf("%d %d ",n,a) : a := a+1 : n := n+1 : od : # R. J. Mathar, Dec 07 2006
  • Mathematica
    Flatten[Position[Partition[Table[If[MemberQ[Partition[IntegerDigits[n, 4], 2, 1], {3, 2}], 1, 0], {n, 1000}], 2, 1], {0, 1}]] + 1 (* Vincenzo Librandi, Aug 19 2015 *)
Showing 1-2 of 2 results.