A124889
Central terms of triangle A124328; a(n) = A124328(2n+1,n+1) for n>=0.
Original entry on oeis.org
1, 2, 9, 44, 235, 1296, 7329, 42104, 244719, 1434840, 8470517, 50280372, 299806572, 1794382548, 10773855210, 64865425760, 391457133672, 2367314649522, 14342441005900, 87035702613500, 528938145043707, 3218713327609648
Offset: 0
A127082
Triangle, read by rows, where the g.f. of column k, C_k(x), is defined by the recursion: C_k(x) = ( 1 + Sum_{n>=1} x^n*C_{n-1+k}(x) )^(k+1).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 7, 3, 1, 16, 28, 15, 4, 1, 64, 127, 85, 26, 5, 1, 308, 650, 531, 192, 40, 6, 1, 1728, 3737, 3600, 1551, 365, 57, 7, 1, 11046, 23996, 26266, 13416, 3635, 620, 77, 8, 1, 79065, 170866, 205353, 122770, 38556, 7356, 973, 100, 9, 1
Offset: 0
C_k = [ 1 + x*C_k + x^2*C_{k+1} + x^3*C_{k+2} +... ]^(k+1).
The columns are generated by working backwards:
C_3 = [ 1 + x*C_3 + x^2*C_4 + x^3*C_5 + x^4*C_6 +... ]^4;
C_2 = [ 1 + x*C_2 + x^2*C_3 + x^3*C_4 + x^4*C_5 +... ]^3;
C_1 = [ 1 + x*C_1 + x^2*C_2 + x^3*C_3 + x^4*C_4 +... ]^2;
C_0 = [ 1 + x*C_0 + x^2*C_1 + x^3*C_2 + x^4*C_3 +... ]^1;
thus the row sums equal column 0 shift left.
The triangle begins:
1;
1, 1;
2, 2, 1;
5, 7, 3, 1;
16, 28, 15, 4, 1;
64, 127, 85, 26, 5, 1;
308, 650, 531, 192, 40, 6, 1;
1728, 3737, 3600, 1551, 365, 57, 7, 1;
11046, 23996, 26266, 13416, 3635, 620, 77, 8, 1;
79065, 170866, 205353, 122770, 38556, 7356, 973, 100, 9, 1;
625049, 1338578, 1716582, 1180496, 429515, 92730, 13412, 1440, 126, 10, 1;
-
T[n_, k_]:= T[n, k]= If[k==n, 1, Coefficient[(1 + x*Sum[x^(r-k)*Sum[T[r, c], {c, k, r}], {r, k, n-1}] + x^(n+1))^(k+1), x, n-k]]; Table[T[n, k], {n,0,12}, {k, 0,n}]//Flatten (* G. C. Greubel, Jan 30 2020 *)
-
{T(n,k)=if(n==k,1,polcoeff( (1 + x*sum(r=k,n-1,x^(r-k)*sum(c=k,r, T(r,c) ))+x*O(x^n))^(k+1),n-k))}
A124344
Number of ordered rooted trees on n nodes with thinning limbs.
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 68, 187, 530, 1523, 4447, 13121, 39107, 117490, 355507, 1082234, 3312255, 10185125, 31450633, 97480337, 303157086, 945671951, 2958113722, 9276528602, 29158191215, 91845796986, 289874628176, 916536727561
Offset: 1
A127126
Triangle, read by rows, where the g.f. of column k, C_k(x), is defined by the recurrence: C_k(x) = [ 1 + Sum_{n>=k+1} C_n(x)*x^(n-k) ]^(k+1) for k>=0.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 77, 54, 18, 4, 1, 587, 412, 139, 30, 5, 1, 5484, 3834, 1314, 284, 45, 6, 1, 60582, 42131, 14658, 3217, 505, 63, 7, 1, 771261, 533558, 188012, 42100, 6680, 818, 84, 8, 1, 11102828, 7645065, 2721462, 621936, 100621, 12387, 1239, 108, 9, 1
Offset: 0
C_k = [ 1 + x*C_{k+1} + x^2*C_{k+2} + x^3*C_{k+3} +... ]^(k+1).
The columns are generated by working backwards:
C_3 = [ 1 + x*C_4 + x^2*C_5 + x^3*C_6 + x^4*C_7 +... ]^4;
C_2 = [ 1 + x*C_3 + x^2*C_4 + x^3*C_5 + x^4*C_6 +... ]^3;
C_1 = [ 1 + x*C_2 + x^2*C_3 + x^3*C_4 + x^4*C_5 +... ]^2;
C_0 = [ 1 + x*C_1 + x^2*C_2 + x^3*C_3 + x^4*C_4 +... ]^1.
The triangle begins:
1;
1, 1;
3, 2, 1;
13, 9, 3, 1;
77, 54, 18, 4, 1;
587, 412, 139, 30, 5, 1;
5484, 3834, 1314, 284, 45, 6, 1;
60582, 42131, 14658, 3217, 505, 63, 7, 1;
771261, 533558, 188012, 42100, 6680, 818, 84, 8, 1;
11102828, 7645065, 2721462, 621936, 100621, 12387, 1239, 108, 9, 1; ...
-
T[n_, k_]:= T[n, k]= If[k==n, 1, Coefficient[(1 + x*Sum[x^(r-k-1)*Sum[T[r, c], {c,k+1,r}], {r,k+1,n}] +x^(n+1))^(k+1), x, n-k]]; Table[T[n, k], {n,0,12}, {k, 0,n}]//Flatten (* G. C. Greubel, Jan 27 2020 *)
-
{T(n,k) = if(n==k,1,polcoeff( (1 + x*sum(r=k+1,n,x^(r-k-1)*sum(c=k+1,r, T(r,c))) +x*O(x^n))^(k+1),n-k))}
A124890
G.f.: A(x) = (1/x)*series_reversion(x^2/G124344(x)), where G124344(x) is the g.f. of A124344 and satisfies: A(x)^2 = (1/x)*G124344(x*A(x)).
Original entry on oeis.org
1, 1, 3, 11, 47, 216, 1047, 5263, 27191, 143484, 770047, 4190031, 23062044, 128170182, 718257014, 4054089110, 23026890216, 131517480529, 754865316100, 4351785130675, 25187530716367, 146305151254984, 852604651815745
Offset: 0
A124891
L.g.f.: A(x) = log(G124890(x)) where G124890(x) is the g.f. of A124890.
Original entry on oeis.org
1, 5, 25, 137, 766, 4379, 25355, 148273, 873574, 5177450, 30833342, 184355207, 1105977887, 6653964847, 40131748300, 242567280865, 1468928473132, 8910461020730, 54131814523902, 329299899410062, 2005674943792559
Offset: 0
A(x) = x + 5*x^2/2 + 25*x^3/3 + 137*x^4/4 + 766*x^5/5 + 4379*x^6/6 +...
exp(A(x)) = G124890(x) where
G124890(x) = 1 + x + 3*x^2 + 11*x^3 + 47*x^4 + 216*x^5 + 1047*x^6 +...
A124329
Number of ordered trees with n edges, with thinning limbs and with root of degree 2. An ordered tree with thinning limbs is such that if a node has k children, all its children have at most k children.
Original entry on oeis.org
0, 1, 2, 5, 10, 22, 46, 101, 220, 492, 1104, 2515, 5762, 13327, 30994, 72555, 170654, 403350, 957134, 2279947, 5449012, 13063595, 31406516, 75701507, 182902336, 442885682, 1074604288, 2612341855, 6361782006, 15518343596, 37912613630
Offset: 1
-
G:=(1-z-2*z^2-sqrt(1-2*z-3*z^2+4*z^3))/2/z^2/(1-z): Gser:=series(G,z=0,40): seq(coeff(Gser,z,n),n=1..36);
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [0$2, 1, 2][n+1],
((3*n+3)*a(n-1) +(n-4)*a(n-2) -(7*n-13)*a(n-3)
+(4*n-10)*a(n-4)) / (n+2))
end:
seq(a(n), n=1..40); # Alois P. Heinz, Jul 08 2014
-
Rest[CoefficientList[Series[(1-x-2*x^2-Sqrt[1-2*x-3*x^2+4*x^3])/2/x^2/(1-x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Sep 04 2014 *)
Table[2*Sum[((Binomial[2*k + 1, k + 1]*Binomial[n - k, k + 1])/(k + 2)), {k, 0, (n - 1)/2}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 22 2016, after Vladimir Kruchinin *)
-
a(n):=2*sum((binomial(2*k+1, k+1)*binomial(n-k, k+1))/(k+2), k, 0, (n-1)/2); /* Vladimir Kruchinin, Apr 21 2016 */
Showing 1-7 of 7 results.
Comments