A124350 a(n) = 4*n*(floor(n^2/2)+1). For n >= 3, this is the number of directed Hamiltonian paths on the n-prism graph.
0, 4, 24, 60, 144, 260, 456, 700, 1056, 1476, 2040, 2684, 3504, 4420, 5544, 6780, 8256, 9860, 11736, 13756, 16080, 18564, 21384, 24380, 27744, 31300, 35256, 39420, 44016, 48836, 54120, 59644, 65664, 71940, 78744, 85820, 93456, 101380, 109896, 118716
Offset: 0
Links
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Hamiltonian Path.
- Eric Weisstein's World of Mathematics, Prism Graph.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Mathematica
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 4, 24, 60, 144, 260}, 60] (* Vincenzo Librandi, Jan 26 2016 *)
-
PARI
Vec(4*x*(x^2+1)*(x^2+4*x+1)/((x-1)^4*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 06 2013
Formula
From Colin Barker, Sep 06 2013: (Start)
a(n) = n*(3 + (-1)^n + 2*n^2).
G.f.: 4*x*(x^2+1)*(x^2+4*x+1) / ((x-1)^4*(x+1)^2). (End)
a(n) = 4*n*A080827(n). - R. J. Mathar, Jan 25 2016
E.g.f.: 2*x*((2 + 3*x + x^2)*cosh(x) + (3 + 3*x + x^2)*sinh(x)). - Stefano Spezia, Jan 27 2024
Extensions
Formula and further terms from Max Alekseyev, Feb 07 2008