cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A125526 Numbers k for which the sum of the digits of k raised to the sum of the digits of k itself is equal to k. If "sumdigit" denotes the sum of the digits of a number then these are the numbers k such that k = sumdigit(k^sumdigit(k)).

Original entry on oeis.org

1, 22, 34, 43, 54, 81, 82, 169, 187
Offset: 1

Views

Author

Keywords

Comments

There are no other terms. Proof: Assume the next term has d digits. 10^d > k >= 10^(d-1); sumdigit(k) >= 9d; k^sumdigit(k) < (10^d)^(9d) < 10^(9d^2); 9*(9d^2+1) > sumdigit(k^sumdigit(k)); 9*(9d^2+1) > k 9*(9d^2+1) > 10^(d-1). So d < 5. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Mar 11 2007

Examples

			a(2)=22 because 2 + 2 = 4, 22^4 = 234256, 2 + 3 + 4 + 2 + 5 + 6 = 22.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,j,k,w; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-trunc(k/10)*10; k:=trunc(k/10); od; k:=i^w; w:=0; while k>0 do w:=w+k-trunc(k/10)*10; k:=trunc(k/10); od; if (i=w) then print(w); fi; od; end: P(200);
    sod := proc(n,b) convert(convert(n,base,b),`+`) end; b:=10: L:=[]: for w to 1 do for n from 1 to 10^3 do x:=sod(n^sod(n,b),b); if x=n then print(n); L:=[op(L),n]; fi; od od; L; # Walter Kehowski, Feb 12 2007
    sd:=proc(n) local nn: nn:=convert(n,base,10): sum(nn[j],j=1..nops(nn)) end: a:=proc(n) if sd(n^sd(n))=n then n else fi end: seq(a(n),n=1..500); # Emeric Deutsch, Feb 16 2007
  • Mathematica
    Select[Range[200],Total[IntegerDigits[#^Total[IntegerDigits[#]]]]==#&] (* Harvey P. Dale, Jul 26 2019 *)

A124367 Numbers that raised to any exponent do not produce a number whose sum of digits is equal to the initial number.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 19, 21, 23, 24, 29, 30, 32, 33, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 83, 84, 87, 88, 89, 92, 93, 95, 96, 99, 100, 101, 102, 105
Offset: 1

Views

Author

Keywords

Comments

Complement of A124359. Numbers for which A247889 is zero.
Most of the values are conjectural, so far not much is really proved about the function A247889. - M. F. Hasler and Robert Israel, May 18 2017

Crossrefs

Programs

Extensions

106 removed by Robert Israel, May 18 2017

A124366 Consecutive numbers n and (n+1) that raised to the same exponent m produce two numbers for which the sum of their digits gives n and (n+1).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 17, 18, 35, 36, 103, 104, 106, 107, 108, 134, 135, 256, 257, 295, 296, 298, 299, 306, 307, 386, 387, 421, 422, 468, 469, 575, 576, 792, 793, 865, 866, 962, 963, 1008, 1009, 1061, 1062, 1476, 1477, 1495, 1496, 2032, 2033, 2376, 2377
Offset: 1

Views

Author

Keywords

Examples

			17^3=4913 (4+9+1+3=17) and 18^3=5832 (5+8+3+2=18)
306^26= 42536043213832457558766474492498614961439017908885402928656941056
(sum of the digits equal to 306) and
307^26= 46301788027092145989912680349353041288862842956233592928809850249
(sum of the digits equal to 307)
		

Crossrefs

A124053 Numbers n that can be expressed as the sum of the digits of both m^k and k^m for distinct numbers m and k which are not both equal to powers of 10.

Original entry on oeis.org

7, 18, 45, 61, 72, 85, 90, 145, 270, 306, 315, 367, 376, 448, 477, 540, 547, 585, 667, 733, 756, 765, 943, 1152, 1377, 1899, 1971, 2106, 2133, 2155, 2215, 2224, 2349, 2628, 2822, 2871, 2968, 3123, 3139, 3181, 3204, 3355, 3546, 3553, 3775, 3780, 4131, 4455
Offset: 1

Views

Author

Paolo P. Lava and Giorgio Balzarotti, Nov 03 2006, Nov 29 2006

Keywords

Comments

If "sumdigit" denotes the sum of the digits of a number then these are the numbers n such that n=sumdigit(m^k)=sumdigit(k^m).
Two banal cases are not considered: 1) m=k because m^k=k^m and the sum of the digits is automatically equal for both the numbers; 2) powers of 10 because sumdigit(10^a)=1 for any integer a. The same number can be generated by different pairs: 477 cames from sumdigit(54^63)=sumdigit(63^54) and sumdigit(90^120)=sumdigit(120^90) 2349 cames from sumdigit(216^222)=sumdigit(222^216), sumdigit(216^225)=sumdigit(225^216) and sumdigit(219^222)=sumdigit(222^219)

Examples

			270 = sumdigit(36^39) = sumdigit(39^36);
1152 = sumdigit(114^126) = sumdigit(126^114);
2133 = sumdigit(204^213) = sumdigit(213^204).
		

Crossrefs

Programs

  • Maple
    P:=proc(n)local i,j,k,w,x,y; for i from 1 by 1 to n do for j from 1 by 1 to n do w:=0; x:=0; k:=i^j; y:=j^i; while k>0 do w:=w+k-trunc(k/10)*10; k:=trunc(k/10); od; while y>0 do x:=x+y-trunc(y/10)*10; y:=trunc(y/10); od; if (w=x) and (w<>1) and (i
    				
Showing 1-4 of 4 results.