A124428 Triangle, read by rows: T(n,k) = binomial(floor(n/2),k)*binomial(floor((n+1)/2),k).
1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 6, 3, 1, 9, 9, 1, 1, 12, 18, 4, 1, 16, 36, 16, 1, 1, 20, 60, 40, 5, 1, 25, 100, 100, 25, 1, 1, 30, 150, 200, 75, 6, 1, 36, 225, 400, 225, 36, 1, 1, 42, 315, 700, 525, 126, 7, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 56, 588, 1960, 2450, 1176, 196, 8
Offset: 0
Examples
Triangle begins: 1; 1; 1, 1; 1, 2; 1, 4, 1; 1, 6, 3; 1, 9, 9, 1; 1, 12, 18, 4; 1, 16, 36, 16, 1; 1, 20, 60, 40, 5; 1, 25, 100, 100, 25, 1; 1, 30, 150, 200, 75, 6; 1, 36, 225, 400, 225, 36, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Jean-Luc Baril, Alexander Burstein, and Sergey Kirgizov, Pattern statistics in faro words and permutations, arXiv:2010.06270 [math.CO], 2020. See paragraph 2.1.
Crossrefs
Programs
-
Magma
[[Binomial(Floor(n/2), k)*Binomial(Floor((n+1)/2),k): k in [0..Floor(n/2)]]: n in [0..15]]; // G. C. Greubel, Feb 24 2019
-
Mathematica
Table[Binomial[Floor[n/2], k]*Binomial[Floor[(n+1)/2], k], {n, 0, 15}, {k, 0, Floor[n/2]}]//Flatten (* G. C. Greubel, Feb 24 2019 *)
-
PARI
T(n,k)=binomial(n\2,k)*binomial((n+1)\2,k)
-
Sage
[[binomial(floor(n/2),k)*binomial(floor((n+1)/2),k) for k in (0..floor(n/2))] for n in (0..15)] # G. C. Greubel, Feb 24 2019
Comments