A124503 Triangle read by rows: T(n,k) is the number of set partitions of the set {1,2,...,n} (or of any n-set) containing k blocks of size 3 (0<=k<=floor(n/3)).
1, 1, 2, 4, 1, 11, 4, 32, 20, 113, 80, 10, 422, 385, 70, 1788, 1792, 560, 8015, 9492, 3360, 280, 39435, 50640, 23100, 2800, 204910, 295020, 147840, 30800, 1144377, 1763300, 1044120, 246400, 15400, 6722107, 11278410, 7241520, 2202200, 200200, 41877722
Offset: 0
Examples
T(4,1)=4 because we have 1|234, 134|2, 124|3 and 123|4. Triangle starts: 1; 1; 2; 4, 1; 11, 4; 32, 20; 113, 80, 10; 422, 385, 70; ...
Links
- Alois P. Heinz, Rows n = 0..250, flattened
Programs
-
Maple
G:=exp(exp(z)-1+(t-1)*z^3/6): Gser:=simplify(series(G,z=0,17)): for n from 0 to 14 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 14 do seq(coeff(P[n],t,k),k=0..floor(n/3)) od; # yields sequence in triangular form # second Maple program: with(combinat): b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!* b(n-i*j, i-1)*`if`(i=3, x^j, 1), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..15); # Alois P. Heinz, Mar 08 2015
-
Mathematica
nn = 8; k = 3; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 + (y - 1) x^k/k!], {x, 0, nn}], {x, y}] // Grid (* Geoffrey Critzer, Aug 26 2012 *)
Formula
E.g.f.: G(t,z) = exp(exp(z)-1+(t-1)z^3/6).
Comments