A124838 Denominators of third-order harmonic numbers (defined by Conway and Guy, 1996).
1, 2, 6, 4, 20, 10, 70, 56, 504, 420, 4620, 3960, 3432, 6006, 90090, 80080, 1361360, 408408, 369512, 67184, 470288, 1293292, 29745716, 27457584, 228813200, 212469400, 5736673800, 5354228880, 155272637520, 291136195350, 273491577450
Offset: 1
Examples
a(1) = 1 = denominator of 1/1. a(2) = 2 = denominator of 1/1 + 5/2 = 7/2. a(3) = 6 = denominator of 7/2 + 13/3 = 47/6. a(4) = 4 = denominator of 47/6 + 77/12 = 57/4. a(5) = 20 = denominator of 57/4 + 87/10 = 549/20. a(6) = 10 = denominator of 549/20 + 223/20 = 341/10 a(7) = 70 = denominator of 341/10 + 481/35 = 3349/70. a(8) = 1260 = denominator of 3349/70 + 4609/280 = 88327/1260. a(9) = 45 = denominator of 88327/1260 + 4861/252 = 3844/45. a(10) = 504 = denominator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping: a(10) = 504 = denominator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
References
- J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Harmonic Number. See equation for third-order harmonic numbers.
Programs
-
Haskell
a124838 n = a213999 (n + 2) (n - 1) -- Reinhard Zumkeller, Jul 03 2012
-
Mathematica
Table[Denominator[(n+2)!/2!/n!*Sum[1/k,{k,3,n+2}]],{n,1,40}] (* Alexander Adamchuk, Nov 11 2006 *)
Formula
a(n) = denominator(Sum_{m=1..n} Sum_{L=1..m} Sum_{k=1..L} 1/k).
a(n) = denominator(((n+2)!/(2!*n!)) * Sum_{k=3..n+2} 1/k). - Alexander Adamchuk, Nov 11 2006
a(n) = A213999(n+2,n-1). - Reinhard Zumkeller, Jul 03 2012
Extensions
Corrected and extended by Alexander Adamchuk, Nov 11 2006
Comments