A124899 Sierpinski quotient ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).
1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, 98920982783015679456199, 265572137199362841880960201, 870019499993663001431459704607, 3416070845000481662841943594125601
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..194
- Eric Weisstein, World of Mathematics. Sierpinski Numbers of the First Kind.
Crossrefs
Programs
-
GAP
List([1..15],n->((2*n-1)^(2*n-1)+1)/(2*n)); # Muniru A Asiru, Apr 08 2018
-
Maple
seq(((2*n-1)^(2*n-1)+1)/(2*n),n=1..20); # Muniru A Asiru, Apr 08 2018
-
Mathematica
Table[((2n-1)^(2n-1)+1)/(2n),{n,1,20}]
-
PARI
a(n) = ((2*n-1)^(2*n-1) + 1)/(2*n); \\ Michel Marcus, Apr 08 2018
Formula
a(n) = ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).
(2n-1)^(a(n)-1) == 1 (mod a(n)). - Thomas Ordowski, Mar 16 2021
Comments