cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124899 Sierpinski quotient ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).

Original entry on oeis.org

1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, 98920982783015679456199, 265572137199362841880960201, 870019499993663001431459704607, 3416070845000481662841943594125601
Offset: 1

Views

Author

Alexander Adamchuk, Nov 12 2006

Keywords

Comments

2n divides Sierpinski number A014566(2n-1).
2^n divides A014566(2^n-1); A014566(2^n - 1) / 2^n = A081216(2^n - 1) = A122000(n) = {1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, ...}.
p+1 divides A014566(p) for prime p; A014566(p)/(p+1) = A056852(n) = {7, 521, 102943, 23775972551, 21633936185161, ...}.
Primes in this sequence are {7, 521, 45957792327018709121}.

Crossrefs

Cf. A014566 (Sierpinski numbers of the first kind: n^n + 1).

Programs

  • GAP
    List([1..15],n->((2*n-1)^(2*n-1)+1)/(2*n)); # Muniru A Asiru, Apr 08 2018
    
  • Maple
    seq(((2*n-1)^(2*n-1)+1)/(2*n),n=1..20); # Muniru A Asiru, Apr 08 2018
  • Mathematica
    Table[((2n-1)^(2n-1)+1)/(2n),{n,1,20}]
  • PARI
    a(n) = ((2*n-1)^(2*n-1) + 1)/(2*n); \\ Michel Marcus, Apr 08 2018

Formula

a(n) = ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).
(2n-1)^(a(n)-1) == 1 (mod a(n)). - Thomas Ordowski, Mar 16 2021