A124936 Numbers k such that k - 1 and k + 1 are semiprimes.
5, 34, 50, 56, 86, 92, 94, 120, 122, 142, 144, 160, 184, 186, 202, 204, 214, 216, 218, 220, 236, 248, 266, 288, 290, 300, 302, 304, 320, 322, 328, 340, 392, 394, 412, 414, 416, 446, 452, 470, 472, 516, 518, 528, 534, 536, 544, 552, 580, 582, 590, 634, 668
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [1..700] | IsSemiprime(n+1) and IsSemiprime(n-1)]; // Vincenzo Librandi, Mar 30 2015
-
Mathematica
lst={};Do[If[Plus@@Last/@FactorInteger[n-1]==2&&Plus@@Last/@FactorInteger[n+1]==2,AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 01 2009 *) Select[Range[2, 700], PrimeOmega[# + 1] == PrimeOmega[# - 1] == 2 &] (* Vincenzo Librandi, Mar 30 2015 *)
-
PARI
list(lim)=if(lim<5,return([])); my(v=List([5]),x=1,y=1); forfactored(z=7,lim\1+1, if(vecsum(z[2][,2])==2 && vecsum(x[2][,2])==2, listput(v,z[1]-1)); x=y; y=z); Vec(v) \\ Charles R Greathouse IV, May 22 2018
-
Python
from sympy import factorint from itertools import count, islice def agen(): # generator of terms yield 5 nxt = 0 for k in count(6, 2): prv, nxt = nxt, sum(factorint(k+1).values()) if prv == nxt == 2: yield k print(list(islice(agen(), 53))) # Michael S. Branicky, Nov 26 2022
Comments